EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速弹丸诱导斜爆轰激波结构实验研究

尚甲豪 胡国暾 汪球 王业军 张坤 项高翔 赵伟 魏炳忱

尚甲豪, 胡国暾, 汪球, 王业军, 张坤, 项高翔, 赵伟, 魏炳忱. 高速弹丸诱导斜爆轰激波结构实验研究. 力学学报, 2023, 55(2): 309-317 doi: 10.6052/0459-1879-22-536
引用本文: 尚甲豪, 胡国暾, 汪球, 王业军, 张坤, 项高翔, 赵伟, 魏炳忱. 高速弹丸诱导斜爆轰激波结构实验研究. 力学学报, 2023, 55(2): 309-317 doi: 10.6052/0459-1879-22-536
Shang Jiahao, Hu Guotun, Wang Qiu, Wang Yejun, Zhang Kun, Xiang Gaoxiang, Zhao Wei, Wei Bingchen. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309-317 doi: 10.6052/0459-1879-22-536
Citation: Shang Jiahao, Hu Guotun, Wang Qiu, Wang Yejun, Zhang Kun, Xiang Gaoxiang, Zhao Wei, Wei Bingchen. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309-317 doi: 10.6052/0459-1879-22-536

高速弹丸诱导斜爆轰激波结构实验研究

doi: 10.6052/0459-1879-22-536
基金项目: 国家自然科学基金(12072353, 11972331), 中国科学院青年创新促进会(2021020)和高温气体动力学国家重点实验室开放基金(2021KT10)资助项目
详细信息
    通讯作者:

    汪球, 高级工程师, 主要研究方向为高焓气动物理与应用. E-mail: wangqiu@imech.ac.cn

  • 中图分类号: O354.4

EXPERIMENT INVESTIGATION OF OBLIQUE DETONATION WAVE STRUCTURE INDUCED BY HYPERSONIC PROJECTILES

  • 摘要: 斜爆轰推进系统在高超声速推进领域具有广阔的应用前景, 其释热迅速、比冲高、燃烧室结构简单的优点吸引研究人员的持续关注. 然而, 斜爆轰的地面试验同时涉及到高速试验环境模拟、燃料与氧化剂混合、高温燃烧流场结构测量等技术难点, 当前国内外系统的试验研究仍然十分有限, 难以支撑斜爆轰发动机的研制. 为了研究自持传播的斜爆轰激波结构与波面流动特性, 基于爆轰驱动二级轻气炮开展了高速弹丸诱导斜爆轰实验研究, 使用直径30 mm球头圆柱形弹丸发射进入充满氢/氧可燃混合气体的实验舱中以起爆斜爆轰波, 并采用两种阴影技术对实验流动结构进行测量. 实验中在不同速度、不同充气压力下观察到三种弹丸诱导激波结构, 即激波诱导燃烧、弹丸起爆爆轰波和相对弹丸驻定的斜爆轰波, 实验舱充气压力下降则会造成爆轰横波尺度增加与波面流动失稳. 实验中, 斜爆轰激波角与理论分析结果吻合较好, 弹丸气动不稳定带来较大的弹丸攻角会对激波角测量带来一定偏差. 通过对斜爆轰波波面法向传播速度的测量发现, 随着远离弹丸, 斜爆轰传播速度由弹丸飞行速度衰减至接近实验气体CJ速度, 弹丸速度的降低会加速斜爆轰波传播速度的衰减.

     

  • 图  1  高速弹丸诱导斜爆轰实验系统示意图

    Figure  1.  Schematic diagram of the hypersonic projectile induced oblique detonation experiment

    图  2  高速阴影(左)及多序列阴影(右)斜爆轰图像(Vp = 3362 m/s, P0 = 20.5 kPa, H2:O2 = 2:1)

    Figure  2.  High-speed shadowgraph (left) and multi-sequence shadowgraph (right) of oblique detonation wave (Vp = 3362 m/s, P0 = 20.5 kPa, H2:O2 = 2:1)

    图  3  驻定斜爆轰波与弓形激波结构

    Figure  3.  Shape of oblique detonation wave and bow shock wave

    图  4  2H2+O2混合气体中高速弹丸诱导激波结构

    Figure  4.  Structure of shock wave induced by hypersonic projectile in the 2H2 + O2 mixture

    图  5  2H2+O2中高速弹丸诱导斜爆轰波实验工况

    Figure  5.  Experimental conditions of oblique detonation induced by hypersonic projectile in the 2H2+O2 mixture

    图  6  2H2 + O2实验气体中高速弹丸诱导激波结构非定常过程

    Figure  6.  Unsteady process of shock wave structure induced by hypersonic projectile in 2H2 + O2

    图  7  无量纲弹丸速度与斜爆轰波激波角

    Figure  7.  The relationship between non-dimensional projectile velocity and oblique detonation wave angle

    图  8  弹丸攻角对斜爆轰波激波角影响

    Figure  8.  Effect of angle of attack of projectile on shock angle of oblique detonation wave

    图  9  2H2 + O2实验气体中斜爆轰波面传播速度

    Figure  9.  Propagation velocity of oblique detonation wave in the 2H2 + O2 mixture

    表  1  实验工况

    Table  1.   Experimental conditions

    CaseVp/(m·s−1)P0/kPaH2:O2DCJ/(m·s−1)
    1245019.22:12753
    2295623.22:12763
    3336220.52:12757
    4343022.22:12761
    5222710.02:12718
    627089.82:12718
    7324712.12:12728
    8371014.92:12740
    9316112.22:12728
    10290420.42:12756
    下载: 导出CSV
  • [1] 杨鹏飞, 张子健, 杨瑞鑫等. 斜爆轰发动机的推力性能理论分析. 力学学报, 2021, 53(10): 2853-2864 (Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese) doi: 10.6052/0459-1879-21-206
    [2] Rubins PM, Bauer RC. Review of shock-induced supersonic combustion research and hypersonic applications. Journal of Propulsion and Power, 1994, 10(5): 593-601 doi: 10.2514/3.23768
    [3] Viguier C, Da Silva LFF, Desbordes D, et al. Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures. Symposium (International) on Combustion, 1996, 26(2): 3023-3031
    [4] Zhang Z, Wen C, Yuan C, et al. An experimental study of formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2022, 237: 111868 doi: 10.1016/j.combustflame.2021.111868
    [5] Rosato DA, Thornton M, Sosa J, et al. Stabilized detonation for hypersonic propulsion. Proceedings of the National Academy of Sciences, 2021, 118(20): e2102244118 doi: 10.1073/pnas.2102244118
    [6] Kaneshige MJ, Shepherd JE. Oblique detonation stabilized on a hypervelocity projectile. Symposium (International) on Combustion, 1996, 26(2): 3015-3022
    [7] Ruegg FW, Dorsey WW. A missile technique for the study of detonation waves. Journal of Research of the National Bureau of Standards, 1962, 66: 51-58
    [8] 崔东明, 范宝春, 陈启峰. 驻定斜爆轰波流场的数值模拟与显示. 弹道学报, 1999, 11(3): 62-66 (Cui Dongming, Fan Baochun, Chen Qifeng. Numerical simulation and visualization od oblique detonation stabilized on a projectile. Journal of Ballistics, 1999, 11(3): 62-66 (in Chinese)
    [9] 崔东明, 范宝春, 邢晓江. 驻定在高速弹丸上的斜爆轰波. 爆炸与冲击, 2002, 22(3): 263-266 (Cui Dongming, Fan Baochun, Xing Xiaojiang. Oblique detonation stabilized on a hypervelocity projectile. Explosion and Shock Waves, 2002, 22(3): 263-266 (in Chinese) doi: 10.3321/j.issn:1001-1455.2002.03.013
    [10] Maeda S, Inada R, Kasahara J, et al. Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proceedings of the Combustion Institute, 2011, 33(2): 2343-2349
    [11] Chernyavskii SY, Baulin NN, Mkrtumov AS. High-speed flow of a mixture of hydrogen and oxygen over blunt bodies. Combustion, Explosion and Shock Waves, 1973, 9(6): 687-690 doi: 10.1007/BF00743020
    [12] Higgins A. The effect of confinement on detonation initiation by blunt projectiles//33rd Joint Propulsion Conference and Exhibit, 1997: 3179
    [13] Verreault J, Higgins AJ. Initiation of detonation by conical projectiles. Proceedings of the Combustion Institute, 2011, 33(2): 2311-2318
    [14] Maeda S, Inada R, Kasahara J, et al. The stabilized oblique detonation wave and unsteady wave structure around hyper-velocity spherical projectile//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011: 505
    [15] Higgins A, Bruckner A. Experimental investigation of detonation initiation by hypervelocity blunt projectiles//34th Aerospace Sciences Meeting and Exhibit, 1996: 342
    [16] Kasahara J, Takeishi A, Kuroda H, et al. Experimental Observation of Oblique Detonation Waves Around Hypersonic Free Projectiles. Ram accelerators. Berlin, Heidelberg: Springer, 1998: 263-270
    [17] Kasahara J, Endo T, Nishide K, et al. Experimental study of interaction between oblique detonation wave and rarefaction wave around a hypersonic free projectile. Le Journal de Physique IV, 2000, 10(PR11): 109-115
    [18] Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA Journal, 2001, 39(8): 1553-1561 doi: 10.2514/2.1480
    [19] Kasahara J, Arai T, Matsuo A, et al. Experimental investigations of steady-state oblique detonation waves generated around hypersonic projectiles//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, 2001: 1800
    [20] Kasahara J, Arai T, Chiba S, et al. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures. Proceedings of the Combustion Institute, 2002, 29(2): 2817-2824
    [21] Lee JHS. Dynamic parameters of gaseous detonations. Annual Review of Fluid Mechanics, 1984, 16(1): 311-336 doi: 10.1146/annurev.fl.16.010184.001523
    [22] Lee JHS. On the initiations of detonation by a hypervelocity projectile//Zelodovich Memorial Conf. on Comb. Voronovo Russia, 1994
    [23] Lee JHS. Initiation of detonation by a hypervelocity projectile//Merzhanov AG , Sirignano WA , Luca LD, Advances in Combustion Science: In Honor of Ya. B. Zel'dovich. AIAA, 1997: 293-310
    [24] Vasiljev AA. Initiation of gaseous detonation by a high speed body. Shock Waves, 1994, 3(4): 321-326 doi: 10.1007/BF01415830
    [25] Vasilśev AA. Detonation combustion of gas mixtures using a hypervelocity projectile. Combustion, Explosion and Shock Waves, 1997, 33(5): 583-597 doi: 10.1007/BF02672745
    [26] Ju Y, Masuya G, Sasoh A. Numerical and theoretical studies on detonation initiation by a supersonic projectile//Symposium (International) on Combustion, 1998, 27(2): 2225-2231
    [27] 方宜申, 胡宗民, 滕宏辉等. 圆球诱发斜爆轰波的数值研究. 力学学报, 2017, 49(2): 268-273 (Fang Yishen, Hu Zongmin, Teng Honghui, et al. Numerical study of the oblique detonation initiation induced by spheres. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273 (in Chinese) doi: 10.6052/0459-1879-16-143
    [28] Bedarev I, Temerbekov V. Estimation of the energy of detonation initiation in a hydrogen-oxygen mixture by a high-velocity projectile. Thermal Science, 2021, 25(5B): 3889-3897
    [29] Muralidharan B, Menon S. Numerical studies of detonation initiation by supersonic projectiles using a high-order adaptive cut-cell method//52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016: 5106
    [30] Pavalavanni PK, Sohn CH, Lee BJ, et al. Revisiting unsteady shock-induced combustion with modern analysis techniques. Proceedings of the Combustion Institute, 2019, 37(3): 3637-3644
    [31] Daimon Y, Matsuo A, Kasahara J. Wave structure and unsteadiness of stabilized oblique detonation waves around hypersonic projectile//45th AIAA Aerospace Sciences Meeting and Exhibit, 2007: 1171
    [32] Bedarev IA, Temerbekov VM, Fedorov AV. Calculation of combustion initiation by shock wave interaction with various-diameter spheres in a hydrogen-air mixture//AIP Conference Proceedings. AIP Publishing LLC, 2018, 2027(1): 040037
    [33] 尚甲豪, 邢好运, 汪球等. 气相爆轰驱动二级轻气炮内弹道数值模拟. 力学学报, 2021, 53(11): 1-12 (Shang Jiahao, Xing Haoyun, Wang Qiu, et al. Numerical research on interior ballistics of the two-stage light gas gun driven by gaseous detonation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 1-12 (in Chinese) doi: 10.6052/0459-1879-377
    [34] Zitoun R, Desbordes D, Guerraud C, et al. Direct initiation of detonation in cryogenic gaseous H2-O2 mixtures. Shock Waves, 1995, 4(6): 331-337 doi: 10.1007/BF01413875
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  90
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 录用日期:  2022-12-29
  • 网络出版日期:  2022-12-29
  • 刊出日期:  2023-02-18

目录

    /

    返回文章
    返回