EXPERIMENTAL STUDY ON THE TURUBLENTCE STRUCTURE CHARACTERISES OF THE JET SHEAR LAYER IN A COUNTERFLOWING WALL JET
-
摘要: 采用粒子图像测速技术对逆壁射流全流场进行了实验测量, 射流与主流的速度比为
$ 8.89 $ , 基于射流圆管内径的雷诺数为$9127$ . 主要关注射流剪切层内不同流向位置湍流的统计特性变化, 包括尺度特性和结构特性. 对射流中心线上不同流向位置的脉动速度场统计分析发现: 在$ x/D = 30\sim 43 $ , 受反馈机制影响, Q1和Q4事件占据主导地位. 在驻点附近($ x/D = 43\sim 50 $ )的区域Q3事件为主导事件. 对射流剪切层内湍流结构的平均空间尺度进行分析, 在$ x/D = 0\sim 37 $ 总尺度向射流下游发展呈增长趋势, 在$ x/D = 37\sim 46 $ 总尺度几乎不变,$ x/D = 46\sim 51 $ 总尺度向射流下游发展呈减小趋势. 在$ x/D = 35 $ 之前, 参考点上游尺度与下游尺度近似. 在$ x/D = 35\sim 41 $ , 参考点下游尺度大于上游尺度. 在$ x/D = 41\sim 51 $ , 参考点下游尺度小于上游尺度. 利用频域上的本征正交分解方法对湍流结构进行了定量分析, 发现模态能量集中在低频, 流场中能量最大的模态频率为$fD/{U_j} = 0.000\;5$ , 出现在再循环区. 频率为$fD/{U_j} = 0.002\;6$ 的第一阶模态说明射流发生偏转时与主流相互作用产生了湍流结构, 并且沿再循环区外围输运. 高频结构的构型是类似的, 均位于射流剪切层内, 且频率越高, 越接近射流出口, 尺度越小.-
关键词:
- 逆壁射流 /
- 粒子图像测速技术 /
- 频域体征正交分解方法 /
- 湍流结构 /
- 射流剪切层
Abstract: The experimental measurement of the flow field of counterflowing wall jet using the particle image velocimetry. The jet velocity ratio to the main flow velocity is$8.89$ , and the Reynolds number based on the jet pipe is$9127$ . This paper focuses on the statistical characteristics of turbulence at different streamwise positions in the jet shear layer, including scale characteristics and structural characteristics. Statistical analysis of the fluctuating velocity field at different streamwise direction positions on the jet centerline shows that: in the range of$ x/D = 30\sim43 $ , Q1 and Q4 events dominate due to the feedback mechanism. Q3 event is dominant in the region near the stagnation point ($ x/D = 43{\text{ }}\sim50 $ ). The spatial scale of the turbulent structure in the jet shear layer is analyzed. The total scale in the interval$ x/D = 0\sim37 $ shows an increasing trend downstream, and it is almost unchanged in the interval$ x/D = 37\sim46 $ . The total scale in the interval$x/D = 46\sim 51$ tends to decrease downstream. In the interval$ x/D = 0\sim35 $ , the upstream scale of the reference point is similar to the downstream scale. In the interval$ x/D = 35\sim41 $ , the downstream scale of the reference point is larger than the upstream scale. In the interval$ x/D = 41\sim51 $ , the downstream scale of the reference point is smaller than the upstream scale. The spectral proper orthogonal decomposition is used to quantitatively analyzes the turbulent structure. It shows that the energy of the mode is concentrated in low frequency. The most energetic mode in the flow field has a frequency of$fD/{U_j} = 0.000\;5$ and appears in the recirculation region. The first mode with a frequency equal to$fD/{U_j} = 0.002\;6$ indicates that the turbulent structure is generated when the jet is deflected by the interaction with the main flow, and transported along the periphery of the recirculation region. The configurations of high-frequency structures are similar, all located in the jet shear layer, and the higher the frequency, the closer to the jet outlet, the smaller the scale.-
Key words:
- counterflowing wall jet /
- PIV /
- SPOD /
- turbulence structure /
- jet shear layer
-
表 1 SPOD使用参数
Table 1. Parameters used when performing SPOD
Item Content total number of snapshots 1500 snapshots window Hamming windows, window length: 680 blocks 28 overlap length 650 -
[1] 李琪琪, 梁彬烽, 郭泳盈等. 基于射流冲击横流原理产生涡旋及其测量. 物理实验, 2020, 40(7): 46-53Li Qiqi, Liang Binfeng, Guo Yongying, et al. Creating and measuring vortex based on principle of jet impinging transverse flow. Physics Experimentation, 2020, 40(7): 46-53 (in Chinese) [2] 姜国强, 任秀文, 李炜. 横流环境湍射流涡动力学特性数值模拟. 水科学进展, 2010, 21(3): 307-314 (Jiang Guoqiang, Ren Xiuwen, Li Wei. Numerical simulation of vorticity dynamics for turbulent jet in crossflow. Advances in Water Science, 2010, 21(3): 307-314 (in Chinese) doi: 10.14042/j.cnki.32.1309.2010.03.001 [3] 李文斌, 顾杰, 匡翠萍等. 基于PIV的横流中射流轨迹与扩散特性试验研究. 水动力学研究与进展, 2018, 33(2): 207-215 (Li Wenbin, Gu Jie, Kuang Cuiping, et al. Experimental study on trajectory and diffusion features of jet in cross-flow with PIV. Chinese Journal of Hydrodynamics, 2018, 33(2): 207-215 (in Chinese) [4] Chan, HC. Investigation of a round jet into a counterflow. [PhD Thesis]. HongKong: University of Hong Kong, 1999 [5] Robillard L, Ramamurthy AS. Experimental investigation of the vortex street generated by a plane jet in a counter flow. Journal of Fluids Engineering, 1974, 96(1): 43-48 [6] Uppathamnarakorn P, Wangjiraniran W, Pimpin A, et al. Characteristics of temperature distribution in swirling jets in counterflow//The 19th Conference of Mechanical Engineering Network of Thailand, Phuket, Thailand, 2005 [7] Li Z, Huai W, Qian Z. Large eddy simulation of a round jet into a counterflow. Science China Technological Sciences, 2013, 56(2): 484-491 doi: 10.1007/s11431-012-5093-1 [8] Ashill P. Flow control: Passive, active, and reactive flow management M. Gadel-hak Cambridge University Press, the Edinburgh Building, Cambridge CB2 2 RU, UK. 2000. 421 pp. illustrated. £ 60. ISBN 0-521-77006-8. The Aeronautical Journal, 2001, 105(1045): 150 [9] Wake B, Tillman G, Ochs S, et al. Control of high-reynolds-number turbulent boundary layer separation using counter-flow fluid injection//3rd AIAA Flow Control Conference, 2006: 3025 [10] Launder B, Rodi W. The turbulent wall jet measurements and modeling. Annual Review of Fluid Mechanics, 1983, 15(1): 429-459 doi: 10.1146/annurev.fl.15.010183.002241 [11] Sharma S, Jesudhas V, Balachandar R, et al. Turbulence structure of a counter-flowing wall jet. Physics of Fluids, 2019, 31(2): 025110 doi: 10.1063/1.5082550 [12] Mahmoudi M, Fleck BA. Experimental measurement of the velocity field of round wall jet in counterflow. Journal of Hydraulic Engineering, 2017, 143(1): 04016076 doi: 10.1061/(ASCE)HY.1943-7900.0001164 [13] Nyantekyi-Kwakye B, Clark S, Tachie M, et al. Flow characteristics and structure of 3D turbulent offset Jets//Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014, 46247: V01 DT27 A006 [14] Eriksson J, Karlsson R, Persson J. An experimental study of a two-dimensional plane turbulent wall jet. Experiments in Fluids, 1998, 25(1): 50-60 doi: 10.1007/s003480050207 [15] George WK, Abrahamsson H, Eriksson J, et al. A similarity theory for the turbulent plane wall jet without external stream. Journal of Fluid Mechanics, 2000, 425: 367-411 doi: 10.1017/S002211200000224X [16] Tachie M, Balachandar R, Bergstrom D. Scaling the inner region of turbulent plane wall jets. Experiments in Fluids, 2002, 33(2): 351-354 doi: 10.1007/s00348-002-0451-6 [17] Verhoff A. The two-dimensional, turbulent wall jet with and without an external free stream. Technical Report, Princeton Univ, New Jersey, 1963 [18] Law AW-K, Herlina. An experimental study on turbulent circular wall jets. J. Hydraul. Eng., 2020, 128(2): 161-174 [19] Agelin-Chaab M, Tachie M. Characteristics of turbulent three-dimensional wall jets. Journal of Fluids Engineering, 2011, 133(2): 021201 doi: 10.1115/1.4003277 [20] Morgan WD, Brinkworth BJ, Evans GV. Upstream penetration of an enclosed counterflowing jet. Industrial & Engineering Chemistry Fundamentals, 1976, 15(2): 125-127 [21] Bernero S, Fiedler H. Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in a counterflow. Experiments in Fluids, 2000, 29(1): 274-281 [22] Tanaka E, Inoue Y, Yamashita S. An experimental study on the two-dimensional opposed wall jet in a turbulent boundary layer: Change in the flow pattern with velocity ratio. Experiments in Fluids, 1994, 17(4): 238-245 doi: 10.1007/BF00203042 [23] Barata JM, Ribeiro S, Santos P, et al. Experimental study of a ground vortex. Journal of Aircraft, 2009, 46(4): 1152-1159 doi: 10.2514/1.36619 [24] Liu Y, Wang Y, Li J, et al. Experimental study on the large-scale turbulence structure dynamics of a counterflowing wall jet. Experiments in Fluids, 2022, 63(10): 1-16 [25] Towne A, Schmidt O T, Colonius T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 2018, 847: 821-867 doi: 10.1017/jfm.2018.283 [26] Lumley JL. The structure of inhomogeneous turbulent flows//Atmospheric Turbulence and Radio Wave Propagation, 1967: 166-178 [27] Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73 doi: 10.1109/TAU.1967.1161901 [28] Sarkar S, Sarkar S. Large-eddy simulation of wake and boundary layer interactions behind a circular cylinder. Journal of Fluids Engineering, 2009, 131(9): 091201 doi: 10.1115/1.3176982 [29] Nakagawa S, Hanratty TJ. Particle image velocimetry measurements of flow over a wavy wall. Physics of Fluids, 2001, 13(11): 3504-3507 doi: 10.1063/1.1399291 [30] 刘铁峰, 王鑫蔚, 唐湛棋等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究. 实验流体力学, 2019, 33(3): 90-96 (Liu Tiefeng, Wang Xinwei, Tang Zhanqi, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96 (in Chinese) doi: 10.11729/syltlx20180101 [31] Zhang B, Ooka R, Kikumoto H. Analysis of turbulent structures around a rectangular prism building model using spectral proper orthogonal decomposition. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104213 doi: 10.1016/j.jweia.2020.104213 -