EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

逆壁射流中射流剪切层内湍流结构特性的实验研究

刘宇陆 王宇泽 李家骅 陶亦舟 邱翔

刘宇陆, 王宇泽, 李家骅, 陶亦舟, 邱翔. 逆壁射流中射流剪切层内湍流结构特性的实验研究. 力学学报, 2023, 55(3): 1-10 doi: 10.6052/0459-1879-22-533
引用本文: 刘宇陆, 王宇泽, 李家骅, 陶亦舟, 邱翔. 逆壁射流中射流剪切层内湍流结构特性的实验研究. 力学学报, 2023, 55(3): 1-10 doi: 10.6052/0459-1879-22-533
Liu Yulu, Wang Yuze, Li Jiahua, Tao Yizhou, Qiu Xiang. Experimental study on the turublentce structure characterises of the jet shear layer in a counterflowing wall jet. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 1-10 doi: 10.6052/0459-1879-22-533
Citation: Liu Yulu, Wang Yuze, Li Jiahua, Tao Yizhou, Qiu Xiang. Experimental study on the turublentce structure characterises of the jet shear layer in a counterflowing wall jet. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 1-10 doi: 10.6052/0459-1879-22-533

逆壁射流中射流剪切层内湍流结构特性的实验研究

doi: 10.6052/0459-1879-22-533
基金项目: 国家自然科学基金(12032016, 91952102)和上海市教育委员会曙光计划(18SG53)资助项目
详细信息
    作者简介:

    刘宇陆, 教授, 主要研究方向为湍流实验及数值模拟研究. E-mail: ylliu@sit.edu.cn

    通讯作者:

    邱翔, 教授, 主要研究方向为湍流实验及数值模拟研究. E-mail: qiux@sit.edu.cn

  • 中图分类号: O357.5

EXPERIMENTAL STUDY ON THE TURUBLENTCE STRUCTURE CHARACTERISES OF THE JET SHEAR LAYER IN A COUNTERFLOWING WALL JET

  • 摘要: 采用粒子图像测速技术对逆壁射流全流场进行了实验测量, 射流与主流的速度比为$ 8.89 $, 基于射流圆管内径的雷诺数为$9127$. 主要关注射流剪切层内不同流向位置湍流的统计特性变化, 包括尺度特性和结构特性. 对射流中心线上不同流向位置的脉动速度场统计分析发现: 在$ x/D = 30\sim 43 $, 受反馈机制影响, Q1和Q4事件占据主导地位. 在驻点附近($ x/D = 43\sim 50 $)的区域Q3事件为主导事件. 对射流剪切层内湍流结构的平均空间尺度进行分析, 在$ x/D = 0\sim 37 $总尺度向射流下游发展呈增长趋势, 在$ x/D = 37\sim 46 $总尺度几乎不变, $ x/D = 46\sim 51 $总尺度向射流下游发展呈减小趋势. 在$ x/D = 35 $之前, 参考点上游尺度与下游尺度近似. 在$ x/D = 35\sim 41 $, 参考点下游尺度大于上游尺度. 在$ x/D = 41\sim 51 $, 参考点下游尺度小于上游尺度. 利用频域上的本征正交分解方法对湍流结构进行了定量分析, 发现模态能量集中在低频, 流场中能量最大的模态频率为$fD/{U_j} = 0.000\;5$, 出现在再循环区. 频率为$fD/{U_j} = 0.002\;6$的第一阶模态说明射流发生偏转时与主流相互作用产生了湍流结构, 并且沿再循环区外围输运. 高频结构的构型是类似的, 均位于射流剪切层内, 且频率越高, 越接近射流出口, 尺度越小.

     

  • 图  1  (a) 逆流壁面射流示意图[11]和(b) 逆流壁面射流速度剖面图

    Figure  1.  (a) Schematics of the counterflowing wall jets[11] and (b) velocity profile of counterflowing wall jets

    图  2  实验装置示意图

    Figure  2.  Schematic of the experimental setup

    图  3  时均流向速度分布(红线为U = 0等值线)

    Figure  3.  Mean streamwise velocity (the red line shows the U = 0 contour)

    图  4  无量纲化平均流向速度剖面

    Figure  4.  The normalized mean streamwise velocity profiles

    图  5  回流系数云图

    Figure  5.  Contours of reverse flow intermittency

    图  6  流向位置$x/D=50 $处的回流系数

    Figure  6.  The reverse flow intermittency at streamwise direction position $x/D=50 $

    图  7  平均展向涡量(黑线为 U = 0 等值线)

    Figure  7.  The contour of mean spanwise vorticity (the red line shows the U = 0 contour)

    图  8  射流中心线($y/D=0.5 $)上, 脉动速度的概率密度函数分布

    Figure  8.  The probability density function (PDF) in the jet center line ($y/D=0.5 $)

    图  9  $u'/{{U}_{j}} $$v'/{{U}_{j}} $的联合概率密度函数

    Figure  9.  The distributions of joint probability density function (JPDF) of $u'/{{U}_{j}} $ and $v'/{{U}_{j}} $

    图  10  (a) 流向速度相关函数和(b) 法向速度相关函数

    Figure  10.  (a) Contour of streamwise velocity correlations and (b) contour of normal velocity correlations

    图  11  基于${{R}_{uu}}=0.5 $湍流结构平均尺度示意图

    Figure  11.  Schematic diagram of the average scale of the turbulence structure based on ${{R}_{uu}}=0.5 $

    图  12  基于${{R}_{uu}}=0.5 $湍流结构平均尺度

    Figure  12.  The average scale of the turbulence structure based on ${{R}_{uu}}=0.5 $

    图  13  法向速度的时空互相关

    Figure  13.  Cross-correlation of the wall-normal velocity

    图  14  SPOD 模态频谱图

    Figure  14.  Spectrum of the SPOD modes

    图  15  流向速度的SPOD模态实部${{\phi }_{f,n}} $

    Figure  15.  The real part of the SPOD modes ${{\phi }_{f,n}} $ of the streamwise velocity

    表  1  SPOD使用参数

    Table  1.   Parameters used when performing SPOD

    ItemContent
    total number of snapshots1500 snapshots
    windowHamming windows, window length: 680
    blocks28
    overlap length650
    下载: 导出CSV
  • [1] 李琪琪, 梁彬烽, 郭泳盈等. 基于射流冲击横流原理产生涡旋及其测量. 物理实验, 2020, 40(7): 46-53

    Li Qiqi, Liang Binfeng, Guo Yongying, et al. Creating and measuring vortex based on principle of jet impinging transverse flow. Physics Experimentation, 2020, 40(7): 46-53 (in Chinese)
    [2] 姜国强, 任秀文, 李炜. 横流环境湍射流涡动力学特性数值模拟. 水科学进展, 2010, 21(3): 307-314 (Jiang Guoqiang, Ren Xiuwen, Li Wei. Numerical simulation of vorticity dynamics for turbulent jet in crossflow. Advances in Water Science, 2010, 21(3): 307-314 (in Chinese) doi: 10.14042/j.cnki.32.1309.2010.03.001
    [3] 李文斌, 顾杰, 匡翠萍等. 基于PIV的横流中射流轨迹与扩散特性试验研究. 水动力学研究与进展, 2018, 33(2): 207-215 (Li Wenbin, Gu Jie, Kuang Cuiping, et al. Experimental study on trajectory and diffusion features of jet in cross-flow with PIV. Chinese Journal of Hydrodynamics, 2018, 33(2): 207-215 (in Chinese)
    [4] Chan, HC. Investigation of a round jet into a counterflow. [PhD Thesis]. HongKong: University of Hong Kong, 1999
    [5] Robillard L, Ramamurthy AS. Experimental investigation of the vortex street generated by a plane jet in a counter flow. Journal of Fluids Engineering, 1974, 96(1): 43-48
    [6] Uppathamnarakorn P, Wangjiraniran W, Pimpin A, et al. Characteristics of temperature distribution in swirling jets in counterflow//The 19th Conference of Mechanical Engineering Network of Thailand, Phuket, Thailand, 2005
    [7] Li Z, Huai W, Qian Z. Large eddy simulation of a round jet into a counterflow. Science China Technological Sciences, 2013, 56(2): 484-491 doi: 10.1007/s11431-012-5093-1
    [8] Ashill P. Flow control: Passive, active, and reactive flow management M. Gadel-hak Cambridge University Press, the Edinburgh Building, Cambridge CB2 2 RU, UK. 2000. 421 pp. illustrated. £ 60. ISBN 0-521-77006-8. The Aeronautical Journal, 2001, 105(1045): 150
    [9] Wake B, Tillman G, Ochs S, et al. Control of high-reynolds-number turbulent boundary layer separation using counter-flow fluid injection//3rd AIAA Flow Control Conference, 2006: 3025
    [10] Launder B, Rodi W. The turbulent wall jet measurements and modeling. Annual Review of Fluid Mechanics, 1983, 15(1): 429-459 doi: 10.1146/annurev.fl.15.010183.002241
    [11] Sharma S, Jesudhas V, Balachandar R, et al. Turbulence structure of a counter-flowing wall jet. Physics of Fluids, 2019, 31(2): 025110 doi: 10.1063/1.5082550
    [12] Mahmoudi M, Fleck BA. Experimental measurement of the velocity field of round wall jet in counterflow. Journal of Hydraulic Engineering, 2017, 143(1): 04016076 doi: 10.1061/(ASCE)HY.1943-7900.0001164
    [13] Nyantekyi-Kwakye B, Clark S, Tachie M, et al. Flow characteristics and structure of 3D turbulent offset Jets//Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014, 46247: V01 DT27 A006
    [14] Eriksson J, Karlsson R, Persson J. An experimental study of a two-dimensional plane turbulent wall jet. Experiments in Fluids, 1998, 25(1): 50-60 doi: 10.1007/s003480050207
    [15] George WK, Abrahamsson H, Eriksson J, et al. A similarity theory for the turbulent plane wall jet without external stream. Journal of Fluid Mechanics, 2000, 425: 367-411 doi: 10.1017/S002211200000224X
    [16] Tachie M, Balachandar R, Bergstrom D. Scaling the inner region of turbulent plane wall jets. Experiments in Fluids, 2002, 33(2): 351-354 doi: 10.1007/s00348-002-0451-6
    [17] Verhoff A. The two-dimensional, turbulent wall jet with and without an external free stream. Technical Report, Princeton Univ, New Jersey, 1963
    [18] Law AW-K, Herlina. An experimental study on turbulent circular wall jets. J. Hydraul. Eng., 2020, 128(2): 161-174
    [19] Agelin-Chaab M, Tachie M. Characteristics of turbulent three-dimensional wall jets. Journal of Fluids Engineering, 2011, 133(2): 021201 doi: 10.1115/1.4003277
    [20] Morgan WD, Brinkworth BJ, Evans GV. Upstream penetration of an enclosed counterflowing jet. Industrial & Engineering Chemistry Fundamentals, 1976, 15(2): 125-127
    [21] Bernero S, Fiedler H. Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in a counterflow. Experiments in Fluids, 2000, 29(1): 274-281
    [22] Tanaka E, Inoue Y, Yamashita S. An experimental study on the two-dimensional opposed wall jet in a turbulent boundary layer: Change in the flow pattern with velocity ratio. Experiments in Fluids, 1994, 17(4): 238-245 doi: 10.1007/BF00203042
    [23] Barata JM, Ribeiro S, Santos P, et al. Experimental study of a ground vortex. Journal of Aircraft, 2009, 46(4): 1152-1159 doi: 10.2514/1.36619
    [24] Liu Y, Wang Y, Li J, et al. Experimental study on the large-scale turbulence structure dynamics of a counterflowing wall jet. Experiments in Fluids, 2022, 63(10): 1-16
    [25] Towne A, Schmidt O T, Colonius T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 2018, 847: 821-867 doi: 10.1017/jfm.2018.283
    [26] Lumley JL. The structure of inhomogeneous turbulent flows//Atmospheric Turbulence and Radio Wave Propagation, 1967: 166-178
    [27] Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73 doi: 10.1109/TAU.1967.1161901
    [28] Sarkar S, Sarkar S. Large-eddy simulation of wake and boundary layer interactions behind a circular cylinder. Journal of Fluids Engineering, 2009, 131(9): 091201 doi: 10.1115/1.3176982
    [29] Nakagawa S, Hanratty TJ. Particle image velocimetry measurements of flow over a wavy wall. Physics of Fluids, 2001, 13(11): 3504-3507 doi: 10.1063/1.1399291
    [30] 刘铁峰, 王鑫蔚, 唐湛棋等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究. 实验流体力学, 2019, 33(3): 90-96 (Liu Tiefeng, Wang Xinwei, Tang Zhanqi, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96 (in Chinese) doi: 10.11729/syltlx20180101
    [31] Zhang B, Ooka R, Kikumoto H. Analysis of turbulent structures around a rectangular prism building model using spectral proper orthogonal decomposition. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104213 doi: 10.1016/j.jweia.2020.104213
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  38
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 录用日期:  2022-12-19
  • 网络出版日期:  2022-12-20

目录

    /

    返回文章
    返回