PAST AND FUTURE EVOLUTIONS OF FLUID MECHANICS: THINKING TRIGGERED BY THE BATCHELOR CENTENNIAL EVENT
-
摘要: G.K. Batchelor是20世纪国际流体力学大师, 在均匀湍流理论和低雷诺数微流体力学领域做出了开创性的贡献, 他对流动追求物理和定量性理解的思想影响了近百年流体力学的发展, 是流体力学顶级期刊Journal of Fluid Mechanics的创刊人, 也是剑桥大学应用数学与理论物理系(DAMTP)的创建者, 培养并影响了一大批在流体动力学理论、实验流体力学、湍流及稳定性、环境流体力学、多相流体力学、磁流体力学、微纳米尺度流体动力学等诸多领域建树卓越的学者. 本文以G.K. Batchelor诞辰100周年纪念活动为契机, 简要回顾了流体力学近300年的发展历程. 概述了流体力学发展历经的以数学和物理为基础建立理论框架的经典流体力学、以应用需求为导向促使自身跨越发展的近代流体力学和以学科融合为特点外延丰富的现代流体力学三个重要阶段; 以师承关系、代表性学者及其主要学术贡献为线索, 总结了现代流体力学四大学派的形成及其近百年的传承沿革; 以历史和发展的视角浅谈当代流体力学发展的动力和趋势, 并以风沙环境力学为例, 简述流体力学为分支学科发展提供的支撑和引领作用, 分支学科的需求为流体力学内生发展提供驱动力的螺旋生长关系; 最后是对未来流体力学发展进步和创新的展望.Abstract: G.K. Batchelor is one of the giants of fluid mechanics in the in the twentieth century. He had made pioneering contributions in the field of homogeneous turbulence theory and low Reynolds number micro-fluid mechanics. He is the founder of Journal of Fluid Mechanics, one of the top journal in the field of fluid mechanics, and the department of applied mathematics and theoretical physics (DAMTP), whose spirit of pursuing physical and quantitative understanding of fluid flows has impressed the development of fluid mechanics in recent 100 years. He has cultivated and influenced a large number of scholars who have made outstanding achievements in numerous subjects of fluid mechanics, including turbulence theory, experimental fluid mechanics, turbulence stability, environmental fluid mechanics, multiphase fluid mechanics, magneto-hydrodynamics, micro- and nano-scale fluid mechanics, etc. Taking the G.K. Batchelor centennial event as an opportunity, this paper briefly reviews the evolution history of fluid mechanics in the past 300 years, including the three important stages of fluid mechanics: classical stage based on solid mathematics and physics foundation, the modern stage driven by application demands, and the contemporary stage characterized by discipline intersection and integration. Special concerns are concentrated on the formation, merging and inheritance of the distinct styles of the four schools in the modern stage of fluid mechanics in the past hundred years from the perspective of outstanding scholars and their key contributions to the discipline. The driving force and trend of the development of contemporary fluid mechanics are discussed taking wind-blown sand environmental mechanics as an example. It shows that fluid mechanics provides the basis for the development of branch disciplines, while the demands of branch disciplines drives the endogenous development of fluid mechanics which forms a spiral growth relationship. Finally, the progress spectrum and innovation trends of fluid mechanics in the future are revealed and discussed.
-
Key words:
- Batchelor /
- fluid mechanics /
- evolution history /
- schools /
- trends
-
表 1 图1中处于经典流体力学阶段的学者信息[13]
Table 1. Information and contributions of the fluid dynamicists in the stage of classical fluid mechanics listed in Fig. 1[13]
人名 生卒年 国籍 主要学术贡献(仅限流体力学领域) Euler 1707—1783 瑞士 理想流体运动方程; 欧拉法 Navier 1785—1839 法国 流体平衡和运动的基本方程; 黏性流体力学创始人之一 Poiseuille 1797—1869 法国 泊肃叶公式; 泊肃叶定律 Froude 1810—1879 英国 Froude数; 相似理论 Stokes 1819—1903 爱尔兰 黏性流体运动基本方程; 表面波; 非线性波; 黏性流体力学的创始人之一 Maxwell 1831—1879 苏格兰 麦克斯韦–玻耳兹曼气体分子运动论; 黏滞系数公式; 向量场旋度 Rayleigh 1842—1919 英国 瑞利数; 瑞利-伯纳德对流; 瑞利波; 瑞利-泰勒不稳定性 Kovalevskaya 1850—1891 俄罗斯 柯西-Kovalevskaya定理 表 2 图1中处于近代流体力学阶段的学者贡献[16]
Table 2. Major contributions of the fluid dynamicists in the stage of modern fluid mechanics listed in Fig. 1[16]
作者(时间) 学术贡献 Reynolds (1883) 雷诺实验; 雷诺数 Reynolds (1895) 雷诺分解; 雷诺应力 Prandtl (1904) 边界层概念、分离与控制 Orr (1907), Sommerfeld (1908) 黏性流动稳定性 Blasius (1913) 管道流动中摩阻的1/4幂律 Taylor (1915) 涡旋运动; 涡量输运理论 Taylor (1921) 连续运动引起的扩散; 拉格朗日自相关函数 Richardson (1922) 级串概念; 数值天气预报 Taylor (1923) Couette流稳定性 Prandtl (1925) 混合长度理论 von Karman (1930) 壁面流动的对数律和外律 Prandtl (1932) 对数律的重新推导 Nikuradse (1932, 1933) 高雷诺数管道流动实验测量 Taylor (1935) 各向同性湍流; 湍流统计理论 Taylor (1938) 湍流的谱分析方法 Karman & Howarth (1938) 自相似理论; K-H方程 Millionshchikov (1939), Proudman & Reid (1956), Tatsumi (1957), Orszag (1970) 准正规封闭, 各向同性湍流相关方程的EDQNM理论 Kolmogorov (1941) 局部各向同性; 小尺度统计普适律; 结构函数的惯性域标度 Obukhov (1941) 惯性域内的功率谱标度 Kolmogorov (1942), Prandtl (1945) 计算湍流流动的模型输运方程 Landau (1944) 导致湍流的无限次分叉理论; 小尺度普适律的判定条件 Peiyuan Zhou (1945) 相关函数的微分方程; 湍流高阶矩模式理论 Burgers (1948) 一维模型方程 Obukhov (1948), Yaglom (1949), Corrsin (1951) Kolmogorov思想推广到被动
标量Onsager (1949) 二维点涡的统计平衡 表 3 图1中处于现代流体力学阶段的学者贡献[16]
Table 3. Major contributions of the fluid dynamicists in the stage of contemporary fluid mechanics listed in Fig. 1[16]
作者(时间) 学术贡献 Batchelor & Townsend (1951) 耗散尺度间歇性 Dhawan (1953) 表面摩擦阻力的直接测量 Kolmogorov (1954), Arnold (1963), Moser (1962) KAM理论 Corrsin & Kistler (1955) 外区间歇性 Batchelor & Proudman (1956), Saffman (1967) 低波数谱 Townsend (1956) Structure of Turbulent Shear Flows Batchelor (1959) 高Schmidt数被动标量理论 Kraichnan (1959, 1965) 场论方法(DIA及LHDIA) Obukhov (1962), Kolmogorov (1962) 间歇性; 局部平均; 对数正态性; 精细相似性假设 Smagorinsky (1962) LES模型 Favre (1965) 变密度平均方法 Kraichnan (1967), Batchelor (1969) 二维湍流 Kovasznay (1971) 条件抽样 Monin & Yaglom (1971, 1975) Statistical Fluid Mechanics, 卷1、2 Barenblatt, Zeldovich (1970s) 中间渐近与不完全相似性 -
[1] Moffatt HK. George Keith Batchelor 8 March 1920-30 March 2000. Biographical Memoirs of Fellows of the Royal Society, 2002, 48: 25-41 doi: 10.1098/rsbm.2002.0002 [2] Batchelor GK. Kolmogoroff’s theory of locally isotropic turbulence. Proceedings of the Cambridge Philosophical Society, 1947, 43: 533-559 doi: 10.1017/S0305004100023793 [3] Frisch U. Turbulence, the Legacy of A. N. Kolmogorov. Cambridge, UK: Cambridge University Press, 1995 [4] Batchelor GK, Townsend AA. Decay of vorticity in isotropic turbulence. Proceedings of the Royal Society of London. Series A, 1947, 190: 534-550 [5] Batchelor GK, Townsend AA. Decay of isotropic turbulence in the initial period. Proceedings of the Royal Society of London. Series A, 1948, 193: 539-558 [6] Batchelor GK, Townsend AA. Decay of turbulence in the final period. Proceedings of the Royal Society of London. Series A, 1948, 194: 527-543 [7] Batchelor GK, Proudman I. The effect of rapid distortion of a fluid in turbulent motion. Quarterly Journal of Mechanics and Applied Mathematics, 1954, 7: 83-103 doi: 10.1093/qjmam/7.1.83 [8] Batchelor GK. Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proceedings of the Cambridge Philosophical Society, 1952, 48: 345-362 [9] Batchelor GK. Sedimentation in a dilute of spheres. Journal of Fluid Mechanics, 1972, 52(2): 245-268 doi: 10.1017/S0022112072001399 [10] Batchelor GK. The Theory of Homogeneous Turbulence. Cambridge, UK: Cambridge University Press, 1953 [11] Batchelor GK. An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press, 1967 [12] Gad-el-hak M. Fluid Mechanics from the beginning to the third millennium. International Journal of Engineering Science, 1998, 14(3): 177-185 [13] 武际可. 1920年以前力学发展史上的100篇重要文献. 力学与实践, 2006, 28(3): 85-91 (Wu Jike. 100 important pieces of literature in the history of mechanics before 1920. Mechanics in Engineering, 2006, 28(3): 85-91 (in Chinese) doi: 10.3969/j.issn.1000-0879.2006.03.025 [14] Sutera SP, Skalak R. The history of Poiseuille's law. Annual Review of Fluid Mechanics, 1993, 25 (1): 1-20 [15] 李家春. 现代流体力学发展的回顾与展望. 力学进展, 1995, 25(4): 442-450 (Li Jiachun. Retrospect and prospects of fluid mechanics. Advances in Mechanics, 1995, 25(4): 442-450 (in Chinese) doi: 10.6052/1000-0992-1993-1-J1993-001 [16] Davidson P, Kaneda Y, Moffatt K. Epilogue: A Turbulence Timeline. In: Davidson P, et al. ed. A Voyage Through Turbulence. Cambridge, UK: Cambridge University Press, 2011: 426-434 [17] Prandtl L. über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandl III, Intern. Math. Kongr. Heidelberg, Auch: Gesammelte Abhandlungen, 1904, 2: 484-491 [18] von Karman. Tooling up mathematics for engineering. Quarterly of Applied Mathematics, 1943, 1: 2-6 [19] Chou PY, Chou RL. 50 years of turbulence research in China. Annual Review of Fluid Mechanics, 1995, 27: 1-15 doi: 10.1146/annurev.fl.27.010195.000245 [20] Schlichting H. Boundary Layer Theory. 7th ed. New York: McGraw Hill Company, 1978 [21] Townsend AA. The Structure of Turbulent Shear Flow. Cambridge, UK: Cambridge University Press, 1956 [22] Turner JS. Buoyant plumes and thermals. Annual Review of Fluid Mechanics, 1969, 1: 29-44 doi: 10.1146/annurev.fl.01.010169.000333 [23] Turner JS. Double-diffusive phenomena. Annual Review of Fluid Mechanics, 1974, 6: 37-54 doi: 10.1146/annurev.fl.06.010174.000345 [24] Phillips OM. The Dynamics of the Upper Ocean. Cambridge, UK: Cambridge University Press, 1977 [25] Saffman PG. Vortex Dynamics. Cambridge, UK: Cambridge University Press, 1992 [26] Gill AE. Atmosphere-ocean Dynamics. Cambridge, UK: Cambridge University Press, 1982 [27] Monin AS, Yaglom A. Statistical Fluid Mechanics, vol. I. & II. Cambridge, Massachusetts: MIT Press, 1971 [28] Liepmann HW, Puckett AE. Introduction to Aerodynamics of A Compressible Fluid. New York: John Wiley & Sons, 1947 [29] Liepmann HW, Roshko A. Elements of Gas Dynamics. New York, US: John Wiley & Sons, 1957 [30] Lighthill J. Sydney Goldstein. 3 December 1903-22 January 1989. Biographical Memoirs of Fellows of the Royal Society, 1990, 36: 174 [31] 谈庆明. 钱学森对近代力学的发展所做的贡献. 力学进展, 2001, 4: 500-508 (Tan Qingming. Contributions to development of modern mechanics by H. S. Tsien. Advances In Mechanics, 2001, 4: 500-508 (in Chinese) doi: 10.6052/1000-0992-2001-4-J2001-109 [32] 黄虎. 由《郭永怀文集》识郭永怀. 应用数学和力学, 2018, 12: 1323-1330 (Huang Hu. Understanding of Guo Yonghuai from the collected works of Guo Yonghuai. Applied Mathematics and Mechanics, 2018, 12: 1323-1330 (in Chinese) [33] 西北工业大学学术委员会. 罗时钧先生学术生涯及辉煌成就. 西北工业大学学报, 2013, 4: 668-675 (Academic Committee of Northwestern Polytechnical Universit. Luo Shijun's academic career and brilliant scientific achievements. Journal of Northwestern Polytechnical University, 2013, 4: 668-675 (in Chinese) doi: 10.3969/j.issn.1000-2758.2013.04.037 [34] 崔尔杰. 空天技术发展与现代空气动力学. 力学进展, 2005, 2: 145-152 (Cui Erjie. The development of aero-astronautic technology and modern aerodynamics. Advances in Mechanics, 2005, 2: 145-152 (in Chinese) doi: 10.6052/1000-0992-2005-2-J2005-031 [35] Sun BH. Thirty years of turbulence study in China. Applied Mathematics and Mechanics (English Edition) , 2019, 40(2): 193-214 doi: 10.1007/s10483-019-2427-9 [36] Similon PL, Sudan RN. Plasma turbulence. Annual Review of Fluid Mechanics, 1990, 22: 317-347 doi: 10.1146/annurev.fl.22.010190.001533 [37] Korobeinikov VP. Gas dynamics of explosions. Annual Review of Fluid Mechanics, 1971, 3: 317-346 doi: 10.1146/annurev.fl.03.010171.001533 [38] Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004, 36: 381-411 doi: 10.1146/annurev.fluid.36.050802.122124 [39] De Wit A. Chemo-hydrodynamic patterns and instabilities. Annual Review of Fluid Mechanics, 2020, 52: 531-555 doi: 10.1146/annurev-fluid-010719-060349 [40] Bjerknes V. Das problem der wettervorhersage, betrachtet vom standpunkte der mechanik und der physik. Meteorologische Zeitschrift, 1904, 21: 1-7 [41] Taylor GI. Eddy motion in the atmosphere. Proceedings of the Royal Society of London. Series A, 1915, 215: 1-26 [42] Prandtl L. Meteorologische anwendung der strö mungslehre. Beiträ ge zur Physik der freien Atmosphä re, 1932, 19: 188-202 [43] von Karman T. Sand Ripples in the Desert. Technion Yearbook, 1943, 52-54: CW98 [44] 李家春. 环境流体力学——它的意义、内容和方法. 力学与实践, 1991, 13(2): 1-12 (Li Jiachun. Environmental fluid dynamics: its significance, contents and methods. Mechanics in Engineering, 1991, 13(2): 1-12 (in Chinese) [45] Bagnold RA. The Physics of Blown Sand and Desert Dunes. London: Methuen, 1941 [46] Owen PR. Saltation of uniform grains in air. Journal of Fluid Mechanics, 1964, 20(2): 225-242 doi: 10.1017/S0022112064001173 [47] Anderson RS, Haff PK. Simulation of eolian saltation. Science, 1988, 241(4867): 820-823 doi: 10.1126/science.241.4867.820 [48] Smagorinsky J. General circulation experiments with the primitive equations, I. The basic experiment. Monthly Weather Review, 1963, 91: 99-164 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [49] Vinkovic I, Aguirre C, Ayrault M, et al. Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Boundary-Layer Meteorology, 2006, 121: 283-311 doi: 10.1007/s10546-006-9072-6 [50] Deardorff JW. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 1970, 41(2): 453-480 doi: 10.1017/S0022112070000691 [51] Zheng XJ, Feng SJ, Wang P. Modulation of turbulence by saltating particles on erodible bed surface. Journal of Fluid Mechanics, 2021, 918: A16 doi: 10.1017/jfm.2021.329 [52] Wang GH, Zheng XJ. Very large scale motions in the atmospheric surface layer: A field investigation. Journal of Fluid Mechanics, 2016, 802: 464-489 doi: 10.1017/jfm.2016.439 [53] 郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战. 力学进展, 2020, 50(1): 202001 (Zheng Xiaojing, Wang Guohua. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics, 2020, 50(1): 202001 (in Chinese) doi: 10.6052/1000-0992-19-009 -