DYNAMIC CATASTROPHE AND CONTROL OF OFFSHORE WIND POWER STRUCTURES IN TYPHOON ENVIRONMENT
-
摘要: 开发海上风能是实现我国碳达峰、碳中和“3060”目标的重要举措. 海上风电的大型化是降本增效的主要途径, 已成为近年来的发展趋势. 目前海上风电基础结构设计标准由欧洲领衔; 区别于欧洲的海洋环境与地质条件, 我国海上风电结构面临强台风、软弱土等挑战, 极易发生动力灾变, 大型化可能进一步加剧风电结构灾变风险. 防灾降载的关键在于深入理解海上风电相关的空气动力学、水动力学、结构动力学、土动力学等的一体化耦合与智能控制. 本文围绕台风环境风机动力灾变与控制相关领域的交叉力学问题, 结合笔者团队近年研究成果, 较为详细地评述了国内外最新研究进展情况, 主要包括: 台风风场及其诱发的波浪场工程尺度性状, 台风环境中风机气动、水动载荷及智能控制策略, 风浪流多向载荷联合作用下基础失效模式与结构灾变机制, 以及考虑风浪流-结构-基础-海床-风机控制耦合作用的一体化分析设计方法. 在此基础上, 建议了我国海上风电大型化进程中仍有待突破的研究重点: 需更深入掌握台风风场工程尺度性状、台风和台风浪载荷特性, 需探索台风环境中的风机控制策略, 亟需建立台风环境中大型海上风电整机一体化设计理论并开发国产化工业软件. 上述相关领域的突破, 对于我国实现海上风能产业的全球引领, 具有重要的科学意义和工程应用价值.Abstract: The development of offshore wind energy has been playing an important role in contributing to the goal of "3060" of carbon peak and carbon neutralization in China. Upsizing of offshore wind turbine is the main approach for cost reduction and efficiency improvement, which has become an important trend in recent years. At present, the design standard of offshore wind structure and foundation is led by Europe. Differing from the favorable offshore environment and ground conditions in the North Sea in Europe, the offshore wind power structures in China has been facing two major challenges: strong typhoon and soft soil, and are thus prone to dynamic catastrophes. The trend of upsizing offshore wind turbines is likely to further aggravate the risk. The key to disaster mitigation lies in the in-depth understanding of the integrated coupling and intelligent control of aerodynamics, hydrodynamics, structural dynamics and soil dynamics related to offshore wind turbine structures. In this paper, the latest research progresses concerning inter-disciplinary studies on catastrophe and control of offshore wind turbines in typhoon environment (including the advances made by the writer’s research group), have been reviewed. The technical contents mainly include: engineering-scaled characteristics of typhoon and its resulting wave field, aerodynamic and hydrodynamic loads with intelligent control strategies for wind turbines in typhoon environment, the failure mechanism of foundations and turbine structures under the combined multi-directional actions from wind, wave and current, and the integrated analysis and design method considering the coupling between wind-wave-current-structure-foundation-intelligent control. On this basis, the key research areas that need to be addressed are suggested, including but not limited to: deeper insights into the engineering-scaled characteristics of typhoon and typhoon wave, research of control strategy for wind turbine in typhoon environment, development of integrated design theory and industrial software for large-scale offshore wind turbine in typhoon environment. Breakthroughs in the above related fields have both scientific value and practical significance for China to achieve a global leading position in the offshore wind and energy industry.
-
表 1 我国“十四五”期间海上风电装机及规划容量统计
Table 1. Statistics of available and planned offshore wind power in China during the 14th Five Year Plan period
Province and city Existing capacity/GW Proposed to be added during the 14th Five Year Plan/GW Liaoning 9.81 8.59 Tianjin 0.845 1.155 Shandong 0.6 7.4 Shandong 5.73 9.27 Shanghai 0.6 1.8 Zhejiang 6.15 5 Fujian 5 10.3 Guangdong 4.2 17 Guangxi 6.53 7.5 Hainan — 12.3 Taiwan — 5.5 Total 39.465 85.815 表 2 实测台风近地湍流强度统计
Table 2. Statistics of measured near-surface turbulence intensity of typhoon
Typhoon Observation height/m Observation site Observation environment Turbulence intensity Prapiroon 0606 10 Bohe Town, Dianbai County, Guangdong Province open and flat facing
the sea0.26 (average) before landfall; 0.15 (average) after landfall Damrey 0518 10 Fort Point, Xuwen County, Guangdong Provinc gentle coast 0.32 (average) before landfall; 0.16 (average) after landfall Hagupit 0814 10 Dianchen, Dianbai County, Guangdong Province gentle coast 0.63 (average) before landfall; 0.20 (average) after landfall Morakot 0908 10, 30, 50 Cangnan County, Zhejiang Province hilly landform 0.193 (average); 0.146 (average); 0.134 (average) Soulik 1307 53 Xiapu County, Ningde City, Fujian Province coastal open landform 0.39 (maximum) before landfall; 0.43 (maximum) after landfall Muifa 1109 26 Lingang, Pudong, Shanghai open and flat facing
the sea0.63 (maximum); 0.33 (average); 0.20 (minimum) Nesat 1117 90 Zhanjiang City, Guangdong Province gentle coast 0.14 (average) Utor 1311 10 Maoming City, Guangdong Province gentle coast 0.16 (average) Neoguri 1408 10 Pudong, Shanghai open and flat facing
the sea0.32 (maximum) Kai-tak 1213 43 Inner Bay of Qinzhou Bay, Guangxi Province flat and open offshore 0.149 (average) Kalmaegi 1415 50 Wenchang City, Hainan Province flat terrain 0.55 (maximum); 0.15 (average) Fitow 1323 168 Wenzhou City, Zhejiang Province complex landform 0.21 (average) Chan-hom 1509 80 Shanghai urban 0.453 (average) Rumbia 1818 497 Shanghai urban high altitude 0.135 (average) Mangkhut 1822 32 Taishan City, Guangdong Province gentle coast 0.29 (average) -
[1] IEC 61400-3. Design requirements for offshore wind turbines//Proceedings of the IEC, 2009 [2] DNV. DNVGL-ST-0437: Loads and site conditions for wind turbines. Oslo, Norway: DNV GL, 2016 [3] DNV. DNVGL-ST-0126: Support structures for wind turbines. Oslo, Norway: DNV GL, 2016 [4] 王力雨, 许移庆. 台风对风电场破坏及台风特性初探. 风能, 2012, 27(5): 74-79 (Wang Liyu, Xu Yiqing. Discover of typhoon damage to wind farm and its characteristics. Wind Energy, 2012, 27(5): 74-79 (in Chinese) [5] Holland GJ. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 1980, 108(8): 1212-1218 doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2 [6] 朱云辉, 孙富学, 姜硕等. 浙南滨海丘陵地貌台风近地风剖面特性实测研究. 振动与冲击, 2019, 38(12): 133-139 (Zhu Yunhui, Sun Fuxue, Jiang Shuo, et al. Experimental study on near-ground wind profile characteristics of typhoon in coastal hilly geomorphology of southern Zhejiang Province. Journal of Vibration and Shock, 2019, 38(12): 133-139 (in Chinese) doi: 10.13465/j.cnki.jvs.2019.12.019 [7] Huang M, Wang Y, Lou W. Examination of typhoon-wind profiles reaching 1000 m height over the Southeast China Sea based on reanalysis data set and mesoscale simulation. Journal of Structural Engineering, 2020, 146(9): 04020192 doi: 10.1061/(ASCE)ST.1943-541X.0002744 [8] Shu ZR, Li QS, He YC, et al. Vertical wind profiles for typhoon, monsoon and thunderstorm winds. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 190-199 doi: 10.1016/j.jweia.2017.06.004 [9] 赵林, 杨绪南, 方根深等. 超强台风山竹近地层外围风速剖面演变特性现场实测. 空气动力学学报, 2019, 37: 43-54 (Zhao Lin, Yang Xunan, Fang Genshen, et al. Observation-based study for the evolution of verticalwind profiles in the boundary layer during supertyphoon mangkhut. Acta Aerodynamica Sinica, 2019, 37: 43-54 (in Chinese) [10] 张传雄, 王艳茹, 黄张琦等. 台风“玛莉亚”作用下风场结构特征现场实测研究. 自然灾害学报, 2019, 28(4): 100-110 (Zhang Chuanxiong, Wang Yanru, Huang Zhangqi, et a1. Field measurement study on wind structure characteristics of specific topography under typhoon Maria. Journal of Natural Disasters, 2019, 28(4): 100-110 (in Chinese) doi: 10.13577/j.jnd.2019.0411 [11] Chen X, Xu JZ. Structural failure analysis of wind turbines impacted by super typhoon Usagi. Engineering Failure Analysis, 2016, 60: 391-404 doi: 10.1016/j.engfailanal.2015.11.028 [12] Li L, Kareem A, Xiao Y, et al. A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 140: 49-66 doi: 10.1016/j.jweia.2014.12.008 [13] 高梓淇. 中国东南近海台风近地层湍流特性研究. [硕士论文]. 青岛: 中国海洋大学, 2014Gao Zhiqi. A study on the characteristics of the near ground turbulence of the typhoon in the Southeast of China. [Master Thesis]. Qingdao: Ocean University of China, 2014 (in Chinese)) [14] 林立, 陈政清, 华旭刚等. 福建滨海区台风过程风特性实测及分析. 福州大学学报(自然科学版), 2019, 47(2): 244-250 (Lin Li, Chen Zhengqing, Hua Xvgang, et al. Measurement and analysis of wind characteristics of typhoon near-earth boundary layer in Fujian coastal area. Journal of Fuzhou University (Natural Science Edition), 2019, 47(2): 244-250 (in Chinese) [15] 欧进萍, 段忠东, 常亮. 中国东南沿海重点城市台风危险性分析. 自然灾害学报, 2002, 11(4): 9-17 (Ou Jinping, Duan Zhongdong, Chang Liang. Typhoon risk analysis for key coastal cities in southeast China. Journal of Natural Disasters, 2002, 11(4): 9-17 (in Chinese) doi: 10.3969/j.issn.1004-4574.2002.04.002 [16] 陈朝晖, 汤海涛. 台风极值风速的数值模拟及分布模型. 重庆大学学报, 2008, 31(11): 1285-1289 (Chen Zhaohui, Tang Haitao. Distribution models of extreme typhoon winds based on numerical simulation of wind data. Journal of Chongqing University, 2008, 31(11): 1285-1289 (in Chinese) doi: 10.11835/j.issn.1000-582X.2008.11.015 [17] Yu B, Gan Chowdhury A, Masters FJ. Hurricane wind power spectra, cospectra, and integral length scales. Boundary-layer Meteorology, 2008, 129(3): 411-430 doi: 10.1007/s10546-008-9316-8 [18] Li L, Xiao Y, Kareem A, et al. Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104: 565-576 [19] Tao T, Wang H, Wu T. Comparative study of the wind characteristics of a strong wind event based on stationary and nonstationary models. Journal of Structural Engineering, 2017, 143(5): 04016230 [20] Cai K, Huang M, Xu H, et al. Analysis of nonstationary typhoon winds based on optimal time-varying mean wind speed. Journal of Structural Engineering, 2022, 148(12): 04022199 doi: 10.1061/(ASCE)ST.1943-541X.0003490 [21] Huang M, Wang Q, Li Q, et al. Typhoon wind hazard estimation by full-track simulation with various wind intensity models. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104792 doi: 10.1016/j.jweia.2021.104792 [22] Huang M, Wang Q, Jing R, et al. Tropical cyclone full track simulation in the western North Pacific based on random forests. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 228: 105119 doi: 10.1016/j.jweia.2022.105119 [23] Huang M, Wang Q, Liu M, et al. Increasing typhoon impact and economic losses due to anthropogenic warming in Southeast China. Scientific Reports, 2022, 12: 14048 doi: 10.1038/s41598-022-17323-8 [24] Young I. A review of the sea state generated by hurricanes. Marine Structures, 2003, 16(3): 201-218 doi: 10.1016/S0951-8339(02)00054-0 [25] Nair MA, Kumar VS, George V. Evolution of wave spectra during sea breeze and tropical cyclone. Ocean Engineering, 2021, 219: 108341 doi: 10.1016/j.oceaneng.2020.108341 [26] Ochi M. Hurricane Generated Seas. Elsevier, 2003 [27] 尹毅, 江丽芳, 张志旭等. 珠江口波浪要素特征分析. 热带海洋学报, 2017, 36(4): 60-66 (Yin Yi, Wang Lifang, Zhang Zhixv, et al. Statistical analysis of wave characteristics in the Pearl River estuary. Journal of Tropical Oceanoraphy, 2017, 36(4): 60-66 (in Chinese) [28] 王毅, 涂小萍, 蒋璐璐等. 台风“利奇马”影响期间浙江沿海海浪特征分析. 气象科学, 2020, 40: 97-105 (Wang Yi; Tu Xiaoping, Jiang Lulu et al. Analysis of wave characteristics along Zhejiang coast during typhoon "Lekima". Journal of the Meteorological Sciences, 2020, 40: 97-105 (in Chinese) [29] 韩晓伟, 周林, 游大鸣等. 0801号台风风浪场和涌浪场的数值模拟. 大气科学学报, 2011, 34(5): 597-605 (Han Xiaowei, Zhou Lin, You Daming, et al. Numerical simulation of wind wave and swell fields generated by 0801 Typhoon. Transactions of Atmospheric Sciences, 2011, 34(5): 597-605 (in Chinese) doi: 10.3969/j.issn.1674-7097.2011.05.010 [30] Young I. Directional spectra of hurricane wind waves. Journal of Geophysical Research: Oceans, 2006, 111(C8): C08020 [31] Esquivel Trava B, Ocampo Torres FJ, Osuna P. Spatial structure of directional wave spectra in hurricanes. Ocean Dynamics, 2015, 65(1): 65-76 doi: 10.1007/s10236-014-0791-9 [32] Yang S, Hou Y, Liu Y. Observed typhoon wave spectrum in northern South China Sea. Chinese Journal of Oceanology and Limnology, 2015, 33(5): 1286-1294 doi: 10.1007/s00343-015-4307-3 [33] Shi H, Cao X, Wen X, et al. The research on typhoon wave spectrum in northwestern South China Sea. Journal of Ocean University of China, 2017, 16(1): 8-14 doi: 10.1007/s11802-017-3115-0 [34] 周阳, 叶钦, 施伟勇等. 浙江中部三门湾波浪特征统计分析. 海洋学报, 2021, 43(3): 13-23 (Zhou Yang, Ye Qin, Shi Weiyong, et al. Statistical analysis on wave characteristics in the Sanmen Bay of Zhejiang middle coast. Acta Oceanologica Sinica, 2021, 43(3): 13-23 (in Chinese) [35] Wei K, Imani H, Qin S. Parametric wave spectrum model for typhoon-generated waves based on field measurements in nearshore strait water. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143(5): 1-36 [36] Moon IJ, Ginis I, Hara T, et al. Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. Journal of Physical Oceanography, 2003, 33(8): 1680-1706 doi: 10.1175/1520-0485(2003)033<1680:NSOSSD>2.0.CO;2 [37] 吴彦, 赵红军, 叶荣辉等. 非对称风场对台风浪模拟效果的比较研究. 海洋预报, 2020, 37(1): 56-61 (Wu Yan, Zhao Hongjun, Ye Ronghui et al. A comparative study of the effects of asymmetric wind field on typhoon wave simulation. Marine Forecasts, 2020, 37(1): 56-61 (in Chinese) doi: 10.11737/j.issn.1003-0239.2020.01.008 [38] 伍志元, 蒋昌波, 邓斌等. 基于WRF-SWAN耦合模式的台风“威马逊”波浪场数值模拟. 海洋科学, 2018, 42(9): 64-72 (Wu Zhiyuan, Jiang Changbo, Deng Bin, et al. Simulation of extreme waves generated by typhoon Rammasun based on coupled WRF-SWIAN model. Marine Sciences, 2018, 42(9): 64-72 (in Chinese) doi: 10.11759/hykx20180405001 [39] Yang Z, Shao W, Ding Y, et al. Wave simulation by the SWAN model and FVCOM considering the sea-water level around the Zhoushan islands. Journal of Marine Science and Engineering, 2020, 8(10): 783 doi: 10.3390/jmse8100783 [40] Xu Y, Zhang J, Xu Y, et al. Analysis of the spatial and temporal sensitivities of key parameters in the SWAN model: An example using Chan-hom typhoon waves. Estuarine, Coastal and Shelf Science, 2020, 232: 106489 doi: 10.1016/j.ecss.2019.106489 [41] Shi XW, Zheng SX, Liu Q, et al. Research on numerical simulation of typhoon waves with different return periods in nearshore areas: case study of Guishan island Waters in Guangdong province, China. Stochastic Environmental Research and Risk Assessment, 2021, 35(9): 1771-1781 doi: 10.1007/s00477-020-01960-4 [42] Lloyd G. Certification of wind turbines for tropical cyclone conditions. GL Renewables Certification Technical Note, 2013 [43] Boukhezzar B, Lupu L, Siguerdidjane H, et al. Multivariable control strategy for variable speed, variable pitch wind turbines. Renewable Energy, 2007, 32(8): 1273-1287 doi: 10.1016/j.renene.2006.06.010 [44] 任年鑫, 李炜, 李玉刚. 台风作用下近海风力机叶片的空气动力载荷研究. 太阳能学报, 2016, 37(2): 322-328 (Ren Nianxin, Li Wei, Li Yugang. Study on aerodynamic loadsof offshore wind turbine blades under typhoon. Actaenergiae Solaris Sinica, 2016, 37(2): 322-328 (in Chinese) doi: 10.3969/j.issn.0254-0096.2016.02.010 [45] 王景全, 陈政清. 试析海上风机在强台风下叶片受损风险与对策——考察红海湾风电场的启示. 中国工程科学, 2010, 12(11): 32-34 (Wang Jingquan, Chen Zhengqing. Analysis of risks and measures on the blade damage of offshore wind turbine during strong typhoons—enlightenment from Red Bay wind farm. Engineering Sciences, 2010, 12(11): 32-34 (in Chinese) doi: 10.3969/j.issn.1009-1742.2010.11.006 [46] 吴金城, 张容焱, 张秀芝. 海上风电机的抗台风设计. 中国工程科学, 2010, 12(11): 25-31 (Wu Jincheng, Zhang Rongyi, Zhang Xiuzhi. Anti-typhoon design for offshore wind turbines. Engineering Sciences, 2010, 12(11): 25-31 (in Chinese) doi: 10.3969/j.issn.1009-1742.2010.11.005 [47] Li Z, Chen S, Ma H, et al. Design defect of wind turbine operating in typhoon activity zone. Engineering Failure Analysis, 2013, 27: 165-172 doi: 10.1016/j.engfailanal.2012.08.013 [48] Wienke J, Oumeraci HJCE. Breaking wave impact force on a vertical and inclined slender pile—Theoretical and large-scale model investigations. Coastal Engineering, 2005, 52(5): 435-462 doi: 10.1016/j.coastaleng.2004.12.008 [49] Zhu J, Gao Y, Wang L, et al. Experimental investigation of breaking regular and irregular waves slamming on an offshore monopile wind turbine. Marine Structures, 2022, 86: 103270 doi: 10.1016/j.marstruc.2022.103270 [50] Paulsen BT, Sonneville BD, Michiel V, et al. Probability of wave slamming and the magnitude of slamming loads on offshore wind turbine foundations. Coastal Engineering, 2019, 143: 76-95 [51] Kamath A, Chella MA, Bihs H, et al. Breaking wave interaction with a vertical cylinder and the effect of breaker location. Ocean Engineering, 2016, 128: 105-115 [52] Deng Y, Yang J, Zhao W, et al. Freak wave forces on a vertical cylinder. Coastal Engineering, 2016, 114: 9-18 doi: 10.1016/j.coastaleng.2016.03.007 [53] Ma Y, Tai B, Dong G, et al. Experimental study of plunging solitary waves impacting a vertical slender cylinder. Ocean Engineering, 2020, 202: 107191 doi: 10.1016/j.oceaneng.2020.107191 [54] Liu Z, Guo Z, Dou Y, et al. Characteristics of breaking wave forces on piles over a permeable seabed. Journal of Marine Science and Engineering, 2021, 9(5): 520-537 [55] 朱嵘华, 张美阳, 田振亚等. 海上风机基础新型安全J型管技术方案. 福建水力发电, 2016, 2: 87-90Zhu Ronghua, Zhang Meiyang, Tian Zhenya, et al. Technical scheme of new type safety J-tube for offshore wind turbine foundation. Fujian Hydropower, 2016, 2: 87-90 (in Chinese)) [56] Gao Y, He J, Ong MC, et al. Three-dimensional numerical investigation on flow past two side-by-side curved cylinders. Ocean Engineering, 2021, 234: 109167 doi: 10.1016/j.oceaneng.2021.109167 [57] Wang L, Zhang J, Yuan F, et al. Interaction between catenary riser and soft seabed: Large-scale indoor tests. Applied Ocean Research, 2014, 45: 10-21 doi: 10.1016/j.apor.2013.12.002 [58] Seyed-Aghazadeh B, Budz C, Modarres-Sadeghi Y. The influence of higher harmonic flow forces on the response of a curved circular cylinder undergoing vortex-induced vibration. Journal of Sound and Vibration, 2015, 353: 395-406 doi: 10.1016/j.jsv.2015.04.036 [59] Chaplin JR, King R. Laboratory measurements of the vortex-induced vibrations of an untensioned catenary riser with high curvature. Journal of Fluids and Structures, 2018, 79: 26-38 doi: 10.1016/j.jfluidstructs.2018.01.008 [60] Yang Q, Jiao X, Luo Q, et al. L1 adaptive pitch angle controller of wind energy conversion systems. ISA Transactions, 2020, 103: 28-36 doi: 10.1016/j.isatra.2020.04.001 [61] Jiao X, Yang Q, Xu B. Hybrid intelligent feedforward-feedback pitch control for VSWT with predicted wind speed. IEEE Transactions on Energy Conversion, 2021, 36(4): 2770-2781 doi: 10.1109/TEC.2021.3076839 [62] Boukhezzar B, Siguerdidjane H. Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Engineering Practice, 2010, 18(12): 1357-1368 doi: 10.1016/j.conengprac.2010.06.010 [63] Xia J, Guo Y, Zhang X, et al. Robust control strategy design for single-phase grid-connected converters under system perturbations. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8892-8901 doi: 10.1109/TIE.2019.2902791 [64] Sumer MB, Freclsoe J. Hydrodynamics Around Cylindrical Structures. Singapore: Word Scientific Publishing Co. Pte. Ltd, 2006 [65] Ettema R, Kirkil G, Muste M. Similitude of large-scale turbulence in experiments on local scour at cylinders. Journal of Hydraulic Engineering, 2006, 132(1): 33-40 doi: 10.1061/(ASCE)0733-9429(2006)132:1(33) [66] Dey S, Raikar RV. Characteristics of horseshoe vortex in developing scour holes at piers. Journal of Hydraulic Engineering, 2007, 133(4): 399-413 doi: 10.1061/(ASCE)0733-9429(2007)133:4(399) [67] Kirkil G, Constantinescu SG, Ettema R. Coherent structures in the flow field around a circular cylinder with scour hole. Journal of Hydraulic Engineering, 2008, 134(5): 572-587 doi: 10.1061/(ASCE)0733-9429(2008)134:5(572) [68] Lança RMM, Simarro G, Fael CMS, et al. Effect of viscosity on the equilibrium scour depth at single cylindrical piers. Journal of Hydraulic Engineering, 2016, 142(3): 06015022 doi: 10.1061/(ASCE)HY.1943-7900.0001102 [69] Ettmer B, Orth F, Link O. Live-bed scour at bridge piers in a lightweight polystyrene bed. Journal of Hydraulic Engineering, 2015, 141(9): 04015017 doi: 10.1061/(ASCE)HY.1943-7900.0001025 [70] 马丽丽, 国振, 王立忠等. 单向流条件下单桩桩周冲刷过程特征试验研究. 海洋工程. 2017, 35: 136-146, 156Ma Lili, Guo Zhen, Wang Lizhong, et al. Scour characteristics at the periphery of a vertical pile under steady flow. The Ocean Engineering, 2017, 35: 136-146, 156 (in Chinese)) [71] 何奔. 软粘土地基单桩和复合桩基水平受荷性状. [博士论文]. 杭州: 浙江大学, 2016He Ben. Lateral behaviour of single pile and composite pile in soft clay. [PhD Thesis]. Hangzhou: Zhejiang University, 2016 (in Chinese)) [72] Wang H, Wang LZ, Hong Y, et al. Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand. Applied Ocean Research, 2020, 101(5): 102196 [73] Wang L, Ishihara T. A semi-analytical one-dimensional model for offshore pile foundations considering effects of pile diameter and aspect ratio. Ocean Engineering, 2022, 250: 110874 [74] Wang L, Ishihara T. New py model for seismic loading prediction of pile foundations in non-liquefiable and liquefiable soils considering modulus reduction and damping curves. Soils and Foundations, 2022, 62(5): 101201 doi: 10.1016/j.sandf.2022.101201 [75] Wang L, Ishihara T. A new FounDyn module in OpenFAST to consider foundation dynamics of monopile supported wind turbines using a site-specific soil reaction framework. Ocean Engineering, 2022, 250: 112692 [76] Poulos HG, Hull TS. The Role of Analytical Geomechanics in Foundation Engineering//Foundation Engineering: Current Principles and Practices, 1989 [77] Hong Y, He B, Wang L, et al. Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: centrifuge tests and numerical modelling. Canadian Geotechnical Journal, 2017, 54(6): 806-824 doi: 10.1139/cgj-2016-0356 [78] Zhang Y, Andersen KH. Soil reaction curves for monopiles in clay. Marine Structures, 2019, 65: 94-113 doi: 10.1016/j.marstruc.2018.12.009 [79] Fu D, Zhang Y, Aamodt KK, et al. A multi-spring model for monopile analysis in soft clays. Marine Structures, 2020, 72: 102768 doi: 10.1016/j.marstruc.2020.102768 [80] Yu J, Huang M, Zhang CJCGJ. Three-dimensional upper-bound analysis for ultimate bearing capacity of laterally loaded rigid pile in undrained clay. Canadian Geotechnical Journal, 2015, 52(11): 1775-1790 doi: 10.1139/cgj-2014-0390 [81] Wang L, Lai Y, Hong Y, et al. A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios. Ocean Engineering, 2020, 212: 107492 doi: 10.1016/j.oceaneng.2020.107492 [82] Lai Y, Wang L, Zhang Y, et al. Site-specific soil reaction model for monopiles in soft clay based on laboratory element stress-strain curves. Ocean Engineering, 2021, 220: 108437 doi: 10.1016/j.oceaneng.2020.108437 [83] 赖踊卿. 软黏土地基海上风机大直径单桩水平受荷特性与分析模型. [博士论文]. 杭州: 浙江大学, 2022Lai Yongqing. Modelling of lateral behaviour of large-diameter monopiles supporting offshore wind turbines in soft clay. [PhD Thesis]. Hangzhou: Zhejiang University, 2022 (in Chinese)) [84] Zhu B, Zhu Z, Li T, et al. Field tests of offshore driven piles subjected to lateral monotonic and cyclic loads in soft clay. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2017, 143(5): 05017003 doi: 10.1061/(ASCE)WW.1943-5460.0000399 [85] Su D, Wu W, Du Z, et al. Cyclic degradation of a multidirectionally laterally loaded rigid single pile model in compacted clay. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 06014002 doi: 10.1061/(ASCE)GT.1943-5606.0001084 [86] Wang L, He B, Yi H, et al. Field tests of the lateral monotonic and cyclic performance of jet-grouting-reinforced cast-in-place piles. Journal of Geotechnical & Geoenvironmental Engineering, 2015, 141(5): 06015001 [87] He B, Wang L, Hong Y. Capacity and failure mechanism of laterally loaded jet-grouting reinforced piles: Field and numerical investigation. Science China Technological Sciences, 2016, 5: 14 [88] 胡安峰, 张晓冬, 贾玉帅等. 饱和软土路基长期沉降计算研究. 岩土工程学报, 2013, 35: 788-792 (Hu Anfeng, Zhang Xiaodong, Jia Yushuai, et al. Permanent settlement of subgrade of saturated soft soils. Chinese Journal of Geotechnical Engineering, 2013, 35: 788-792 (in Chinese) [89] Duque J, Ochmański M, Mašín D, et al. On the behavior of monopiles subjected to multiple episodes of cyclic loading and reconsolidation in cohesive soils. Computers and Geotechnics, 2021, 134: 104049 doi: 10.1016/j.compgeo.2021.104049 [90] Kuo Y-S, Achmus M, Abdel-Rahman K. Minimum embedded length of cyclic horizontally loaded monopiles. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(3): 357-363 doi: 10.1061/(ASCE)GT.1943-5606.0000602 [91] Mayoral J, Pestana J, Seed R. Multi-directional cyclic p-y curves for soft clays. Ocean Engineering, 2016, 115: 1-18 doi: 10.1016/j.oceaneng.2016.01.033 [92] McCarron WO. Bounding surface model for soil resistance to cyclic lateral pile displacements with arbitrary direction. Computers and Geotechnics, 2016, 71: 47-55 doi: 10.1016/j.compgeo.2015.08.004 [93] Su D, Yan WM. A multidirectional p-y model for lateral sand-pile interactions. Soils and Foundations, 2013, 53(2): 199-214 doi: 10.1016/j.sandf.2013.02.002 [94] Lovera A, Ghabezloo S, Sulem J, et al. Pile response to multi-directional lateral loading using P-y curves approach. Géotechnique, 2021, 71(4): 288-298 [95] Hong Y, Yao M, Wang L. A multi-axial bounding surface p-y model with application in analyzing pile responses under multi-directional lateral cycling. Computers and Geotechnics, 2023, 157: 105301 doi: 10.1016/j.compgeo.2023.105301 [96] Lehane BM, Pedram B, Doherty JA, et al. Improved performance of monopiles when combined with footings for tower foundations in sand. Journal of Geotechnical and Geo-environmental Engineering, 2014, 140(7): 04014027 doi: 10.1061/(ASCE)GT.1943-5606.0001109 [97] He B, Wang L, Hong Y. Field testing of one-way and two-way cyclic lateral responses of single and jet-grouting reinforced piles in soft clay. Acta Geotechnica, 2017, 12(5): 1021-1034 doi: 10.1007/s11440-016-0515-z [98] Ben H, Zhong WL, Yi H. Capacity and failure mechanism of laterally loaded jet-grouting reinforced piles: Field and numerical investigation. Science China Technological Sciences, 2016, 59(5): 763-776 doi: 10.1007/s11431-016-6014-5 [99] Wang L, He B, Hong Y, et al. Field tests of the lateral monotonic and cyclic performance of jet-grouting-reinforced cast-in-place piles. Journal of Geotechnical and Geo-environmental Engineering, 2015, 141(5): 06015001 doi: 10.1061/(ASCE)GT.1943-5606.0001287 [100] Bisoi S, Haldar S. Design of monopile supported offshore wind turbine in clay considering dynamic soil-structure-interaction. Soil Dynamics and Earthquake Engineering, 2015, 73: 103-117 doi: 10.1016/j.soildyn.2015.02.017 [101] Rezaei R, Paul F, Duffour P. Fatigue life sensitivity of monopile-supported offshore wind turbines to damping. Renewable Energy, 2018, 123: 450-459 [102] Loken IB, Kaynia AM. Effect of foundation type and modelling on dynamic response and fatigue of offshore wind turbines. Wind Energy, 2019, 22(12): 1667-1683 doi: 10.1002/we.2394 [103] Jung S, Kim SR, Patil A, et al. Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower. Ocean Engineering, 2015, 109: 479-488 doi: 10.1016/j.oceaneng.2015.09.033 [104] Krathe VL, Kaynia AM. Implementation of a non-linear foundation model for soil-structure interaction analysis of offshore wind turbines in FAST. Wind Energy, 2017, 20(4): 695-712 doi: 10.1002/we.2031 -