EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于POD和代理模型的静气动弹性分析方法

李凯 杨静媛 高传强 叶坤 张伟伟

李凯, 杨静媛, 高传强, 叶坤, 张伟伟. 基于POD和代理模型的静气动弹性分析方法. 力学学报, 2023, 55(2): 299-308 doi: 10.6052/0459-1879-22-523
引用本文: 李凯, 杨静媛, 高传强, 叶坤, 张伟伟. 基于POD和代理模型的静气动弹性分析方法. 力学学报, 2023, 55(2): 299-308 doi: 10.6052/0459-1879-22-523
Li Kai, Yang Jingyuan, Gao Chuanqiang, Ye Kun, Zhang Weiwei. Static aeroelastic analysis based on proper orthogonal decomposition and surrogate model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308 doi: 10.6052/0459-1879-22-523
Citation: Li Kai, Yang Jingyuan, Gao Chuanqiang, Ye Kun, Zhang Weiwei. Static aeroelastic analysis based on proper orthogonal decomposition and surrogate model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308 doi: 10.6052/0459-1879-22-523

基于POD和代理模型的静气动弹性分析方法

doi: 10.6052/0459-1879-22-523
基金项目: 国家自然科学基金(12272306)和中央高校基本科研业务费专项资金(D5000200542)资助项目
详细信息
    通讯作者:

    张伟伟, 教授, 主要研究方向为智能空气动力学、气动弹性力学. E-mail: aeroelastic@nwpu.edu.cn

  • 中图分类号: V211.3

STATIC AEROELASTIC ANALYSIS BASED ON PROPER ORTHOGONAL DECOMPOSITION AND SURROGATE MODEL

  • 摘要: 静气动弹性问题考虑弹性结构与定常气动力间的相互耦合作用, 对飞行器的性能和安全具有显著的影响. 在现代飞行器设计阶段, 计算流体力学(CFD)/计算结构力学(CSD)直接耦合方法是精确考察静气动弹性影响的重要手段. 然而, 基于CFD技术的气动力仿真手段在耦合过程中计算量大且耗时长, 难以满足设计阶段的需求. 因此, 为了兼顾计算精度与效率, 文章采用本征正交分解(POD)和Kriging代理模型相结合的模型降阶方法, 替代CFD求解过程并耦合有限元分析(FEA)方法, 建立了高效、准确的静气动弹性分析框架. 相较于传统的以模态法为主的静气动弹性分析方法, 该方法能够解决更为复杂的静气动弹性问题以及提供静气动弹性变形过程中的气动分布载荷. 针对典型三维跨声速HIRENASD机翼模型开展的马赫数、迎角变化的算例验证表明: 由建立的静气动弹性分析方法与CFD/CSD直接耦合方法计算得到机翼翼梢处的静变形量间的相对误差在5%以内; 同时该方法预测静平衡位置处的气动分布载荷的误差在5%以内, 静气动弹性分析的计算效率至少提升了6倍.

     

  • 图  1  静气动弹性分析框架

    Figure  1.  The flowchart of static aeroelastic analysis

    图  2  计算网格

    Figure  2.  The computational grid

    图  3  不同截面位置处的压力系数与试验数据的对比

    Figure  3.  Comparison of the computational pressure coefficient with experimental data in different sections

    3  不同截面位置处的压力系数与试验数据的对比(续)

    3.  Comparison of the computational pressure coefficient with experimental data in different sections (continued)

    图  4  马赫数和迎角

    Figure  4.  Mach number and angle of attack

    图  5  前4阶POD模态

    Figure  5.  The first 4 POD modes

    图  6  不同动压和展向下机翼变形量对比

    Figure  6.  Comparison of the displacement of wing at different dynamic pressure and span

    图  7  Q = 40055.4 Pa时压力分布云图对比

    Figure  7.  Comparison of pressure distribution contour at Q = 40055.4 Pa

    图  8  Q = 40055.4 Pa时压力分布的误差云图

    Figure  8.  Error contour for pressure distribution at Q = 40055.4 Pa

    图  9  Q = 10 kPa时位移云图对比

    Figure  9.  Comparison of displacement contour at Q = 10 kPa

    图  10  Q = 10 kPa时位移误差云图

    Figure  10.  Error contour for displacement at Q = 10 kPa

    表  1  动压为40055.4 Pa时, 误差对比情况

    Table  1.   Comparison of the relative error at Q = 40055.4 Pa

    Y/bCFD-LE
    dz/mm
    ROM-LE
    dz/mm
    RLE/%CFD-TE
    dz/mm
    ROM-TE
    dz/mm
    RTE/%
    0.10.07420.07835.53830.24010.25365.6400
    0.20.21880.22231.59930.56450.58443.5342
    0.30.54310.55091.43051.20821.23532.2456
    0.41.21991.19891.71662.20122.18610.6855
    0.52.22592.21770.36973.49973.44751.4941
    0.63.73943.62822.97355.12115.07340.9309
    0.75.52605.49860.49577.11937.10350.2215
    0.87.88027.78031.26849.37939.37000.0995
    0.910.412710.26061.460711.745911.71070.2997
    0.9912.867612.55822.404514.066813.79331.9443
    下载: 导出CSV

    表  2  动压为10 kPa时, 误差对比情况

    Table  2.   Comparison of the relative error at Q = 10 kPa

    Y/bCFD-LE dz/mmROM-LE dz/mmRLE/%CFD-TE dz/mmROM-TE dz/mmRTE/%
    0.10.17030.17653.62950.55240.57163.4702
    0.20.49640.49041.21671.29221.31271.5903
    0.31.23051.23480.35272.75722.76880.4214
    0.42.75882.66633.35305.01164.87122.8021
    0.55.04984.90162.93507.91627.70642.6499
    0.68.42538.06954.222811.585111.22313.1247
    0.712.438512.10502.681216.037115.67662.2479
    0.817.731917.18023.111321.133120.64882.2917
    0.923.345622.56253.354426.459525.75422.6656
    0.9928.922427.56184.704331.705730.30524.4172
    下载: 导出CSV

    表  3  计算时间对比

    Table  3.   Comparison of computational time

    ApproachTime costTotal time/h
    CFD/FEA(1) There are 100 steady cases and time cost for each case is about 400 min;
    (2) There are 7 cases for each steady case and time cost for each case is about 240 min.
    $\begin{gathered} (10 \times 10 \times 400 + 10 \times \\ 10 \times 7 \times 240) \div 60= \\ 3446.67 \\ \end{gathered}$
    ROM/FEA(1) Time cost for each CFD case and ROM training are about 30 and 0.3 min, respectively;
    (2) There are 6 steady cases, 18 cases for static analysis and 180 CFD cases for training sample;
    (3) Time cost for each static analysis is about 30 min.
    $\begin{gathered} (400 \times 6{\text{ + 18} } \times {\text{240} }+ \\ {\text{ 180} } \times {\text{30 + 10} } \times {\text{10} } \times \\ 7 \times {\text{30 + 0} }{\text{.3} }) \div 60 = \\ {\text{ 552} }{\text{.005} } \\ \end{gathered}$
    下载: 导出CSV
  • [1] Afonso F, Vale J, Oliveira É, et al. A review on non-linear aeroelasticity of high aspect-ratio wings. Progress in Aerospace Sciences, 2017, 89: 40-57 doi: 10.1016/j.paerosci.2016.12.004
    [2] 杨超, 杨澜, 谢长川. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展. 空气动力学学报, 2018, 36(6): 1009-1018 (Yang Chao, Yang Lan, Xie Changchuan. Development of aerodynamic methods in aeroelastic analysis for high aspect ratio flexible wings. Acta Aerodynamica Sinica, 2018, 36(6): 1009-1018 (in Chinese) doi: 10.7638/kqdlxxb-2018.0237
    [3] 郭洪涛, 陈德华, 吕彬彬等. 大展弦比机翼跨声速静气动弹性风洞试验. 空气动力学学报, 2017, 35(6): 841-845 (Guo Hongtao, Chen Dehua, Lü Binbin, et al. Wind tunnel test on transonic static areoelasticity of high-aspect-ratio wing. Acta Aerodynamica Sinica, 2017, 35(6): 841-845 (in Chinese)
    [4] 叶正寅, 王刚, 张伟伟. 流固耦合力学基础及其应用, 第2版. 哈尔滨: 哈尔滨工业大学出版社, 2016: 165-170

    Ye Zhengyin, Wang Gang, Zhang Weiwei. Fundamentals of Fluid-Structure Coupling and Its Application, 2rd Edition. Harbin: Harbin Institute of Technology Press, 2016: 165-170 (in Chinese))
    [5] 孙岩, 王昊, 江盟等. NNW-FSI软件静气动弹性耦合加速策略设计与实现. 航空学报, 2021, 42(9): 625738 (Sun Yan, Wang Hao, Jiang Meng, et al. Design and implementation of coupling acceleration strategy in static aeroelastic module of NNW-FSI software. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625738 (in Chinese)
    [6] 贾欢. 大规模结构高效静气弹多学科优化设计研究. [博士论文]. 西安: 西北工业大学, 2016

    Jia Huan. High efficient multidisciplinary design optimization of static aeroelasticity for large-scale structure. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese))
    [7] 杜子亮, 万志强, 杨超. 模态选取对静气动弹性分析的影响. 航空学报, 2015, 36(4): 1128-1137 (Du Ziliang, Wan Zhiqiang, Yang Chao. Effect of modal selection on static aeroelastic analysis. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1128-1137 (in Chinese)
    [8] Mian HH, Wang G, Ye ZY. Numerical investigation of structural geometric nonlinearity effect in high-aspect-ratio wing using CFD/CSD coupled approach. Journal of Fluids and Structures, 2014, 49: 186-201 doi: 10.1016/j.jfluidstructs.2014.04.011
    [9] Gordnier RE, Chimakurthi SK, Cesnik CES, et al. High-fidelity aeroelastic computations of a flapping wing with spanwise flexibility. Journal of Fluids and Structures, 2013, 40: 86-104 doi: 10.1016/j.jfluidstructs.2013.03.009
    [10] Ye K, Ye ZY, Li CN, et al. Effects of the aerothermoelastic deformation on the performance of the three-dimensional hypersonic inlet. Aerospace Science and Technology, 2019, 84: 747-762 doi: 10.1016/j.ast.2018.11.015
    [11] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望. 航空学报, 2021, 42(4): 524689 (Zhang Weiwei, Kou Jiaqing, Liu Yilang. Prospect of artificial intelligence empowered fluid mechanics. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese)
    [12] Lucia DJ, Beran PS, Silva WA. Reduced-order modeling: new approaches for computational physics. Progress in Aerospace Sciences, 2004, 40(1-2): 51-117 doi: 10.1016/j.paerosci.2003.12.001
    [13] 张伟伟, 叶正寅. 基于CFD的气动力建模及其在气动弹性中的应用. 力学进展, 2008, 38(1): 77-86 (Zhang Weiwei, Ye Zhengyin. On unsteady aerodynamic modeling based on CFD technique and its applications on aeroelastic analysis. Advances in Mechanics, 2008, 38(1): 77-86 (in Chinese) doi: 10.3321/j.issn:1000-0992.2008.01.005
    [14] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望. 力学进展, 2011, 41(6): 686-701 (Chen Gang, Li Yueming. Advances and prospects of the reduced order model for unsteady flow and its applications. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese) doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009
    [15] Ghoreyshi M, Jirasek A, Cummings RM. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics. Progress in Aerospace Sciences, 2014, 71: 167-217 doi: 10.1016/j.paerosci.2014.09.001
    [16] 杨执钧, 黄锐, 刘豪杰等. 大长细比导弹的气动弹性降阶模型. 力学学报, 2017, 49(3): 517-527 (Yang Zhijun, Huang Rui, Liu Haojie, et al. Aeroelastic model of reduced-order for a slender missile. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 517-527 (in Chinese) doi: 10.6052/0459-1879-16-358
    [17] Kou JQ, Zhang WW. Data-driven modeling for unsteady aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 2021, 125: 100725 doi: 10.1016/j.paerosci.2021.100725
    [18] Dowell EH. A Modern Course in Aeroelasticity, 6th edn., Switzerland: Springer, 2022: 447-471
    [19] Yang JY, Liu YL, Zhang WW. Static aeroelastic modeling and rapid analysis of wings in transonic flow. International Journal of Aerospace Engineering, 2018, 2018: 5421027
    [20] Lindhorst K, Haupt MC, Horst P. Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes. AIAA Journal, 2014, 52(9): 1952-1966 doi: 10.2514/1.J052725
    [21] Lindhorst K, Haupt MC, Horst P. Reduced-order modelling of non-linear, transient aerodynamics of the HIRENASD wing. The Aeronautical Journal, 2016, 120(1226): 601-626 doi: 10.1017/aer.2016.12
    [22] 朱强华, 杨恺, 梁钰等. 基于特征正交分解的一类瞬态非线性热传导问题的新型快速分析方法. 力学学报, 2020, 52(1): 124-138 (Zhu Qianghua, Yang Kai, Liang Yu, et al. A novel fast algorithm based on model order reduction for one class of transient nonlinear heat conduction problem. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 124-138 (in Chinese) doi: 10.6052/0459-1879-19-323
    [23] 赵丹阳, 刘韬, 李红霞等. 可降解聚合物血管支架结构优化设计. 力学学报, 2017, 49(6): 1409-1417 (Zhao Danyang, Liu Tao, Li Hongxia, et al. Optimization design of degradable polymer vascular stent structure. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417 (in Chinese) doi: 10.6052/0459-1879-17-214
    [24] Crowell AR, Mcnamara JJ. Model reduction of computational aerothermodynamics for hypersonic aerothermoelasticity. AIAA Journal, 2012, 50(1): 74-84 doi: 10.2514/1.J051094
    [25] Chen X, Liu L, Long T, et al. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD. Chinese Journal of Aeronautics, 2015, 28(5): 1328-1342 doi: 10.1016/j.cja.2015.06.024
    [26] 赵旋, 张伟伟, 邓子辰. 融入压力分布信息的气动力建模方法. 力学学报, 2022, 54(9): 2616-2626 (Zhao Xuan, Zhang Weiwei, Deng Zichen. Aerodynamic modeling method incorporating pressure distribution information. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2616-2626 (in Chinese) doi: 10.6052/0459-1879-22-170
    [27] 杨倩, 郭晓峰, 李芹等. 基于 POD 和代理模型的热气防冰性能预测方法. 航空学报, 2023, 44: 126992 (Yang Qian, Guo Xiaofeng, Li Qin, et al. Hot air anti-icing performance estimation method based on POD and surrogate model. Acta Aeronautica et Astronautica Sinica, 2023, 44: 126992 (in Chinese)
    [28] 韩忠华. Kriging模型及代理优化算法研究进展. 航空学报, 2016, 37(11): 3197-3225 (Han Zhonghua. Kriging surrogate model and its application to design optimization: A review of recent progress. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese)
    [29] 蒋跃文. 基于广义网格的CFD方法及其应用. [博士论文]. 西安: 西北工业大学, 2013

    Jiang Yuewen. Methodology of generalized mesh and its application to solve the Navier-Stokes equations. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2013 (in Chinese))
    [30] Dhondt G. Calculix: A free software three-dimensional structural finite element program. http://www.calculix.de, 2022-08-30
    [31] Rendall TCS, Allen CB. Unified fluid−structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering, 2008, 74(10): 1519-1559 doi: 10.1002/nme.2219
    [32] Ballmann J. Experimental analysis of high Reynolds number structural dynamics in ETW//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA, 2008: 84
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  122
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-01-09
  • 刊出日期:  2023-02-18

目录

    /

    返回文章
    返回