EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑相变的近场动力学热−力耦合模型及多孔介质冻结破坏模拟

李星 顾鑫 夏晓舟 陈爱玖 章青

李星, 顾鑫, 夏晓舟, 陈爱玖, 章青. 考虑相变的近场动力学热−力耦合模型及多孔介质冻结破坏模拟. 力学学报, 2022, 54(12): 3310-3318 doi: 10.6052/0459-1879-22-521
引用本文: 李星, 顾鑫, 夏晓舟, 陈爱玖, 章青. 考虑相变的近场动力学热−力耦合模型及多孔介质冻结破坏模拟. 力学学报, 2022, 54(12): 3310-3318 doi: 10.6052/0459-1879-22-521
Li Xing, Gu Xin, Xia Xiaozhou, Chen Aijiu, Zhang Qing. Peridynamic thermomechanical coupling model with phase change and simulation of freezing failure of porous media. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3310-3318 doi: 10.6052/0459-1879-22-521
Citation: Li Xing, Gu Xin, Xia Xiaozhou, Chen Aijiu, Zhang Qing. Peridynamic thermomechanical coupling model with phase change and simulation of freezing failure of porous media. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3310-3318 doi: 10.6052/0459-1879-22-521

考虑相变的近场动力学热−力耦合模型及多孔介质冻结破坏模拟

doi: 10.6052/0459-1879-22-521
基金项目: 国家自然科学基金(11932006, 52179133, U1934206, 12172121)资助项目
详细信息
    作者简介:

    章青, 教授, 主要研究方向: 计算力学与灾变破坏力学. E-mail: lxzhangqing@hhu.edu.cn

  • 中图分类号: O343.6

PERIDYNAMIC THERMOMECHANICAL COUPLING MODEL WITH PHASE CHANGE AND SIMULATION OF FREEZING FAILURE OF POROUS MEDIA

  • 摘要: 多孔介质的传热传质现象广泛存在于自然界和工业领域中. 低温条件可能导致多孔介质中的组分发生相变, 并由此诱发材料损伤, 甚至导致结构失效破坏. 对这类破坏现象的预测需要精细化建模, 以能够反映物质的相变过程和材料的破坏特征. 本文采用热焓法改写经典的热传导方程, 在近场动力学框架下, 建立了一种考虑物质相变的热−力耦合模型, 发展了交错显式求解的数值计算方法, 进行了方板角冻结、热致变形和多孔介质冻结破坏等问题的模拟, 得到了方板的冻结特征、温度场和变形场的分布规律以及多孔介质的冻结破坏过程, 与试验和其他数值方法的结果具有较好的一致性. 研究表明, 本文所建立的考虑物质相变的近场动力学热−力耦合模型能够反映材料的非局部效应和物质相变潜热的影响, 准确捕捉相变过程中液固界面的演化特征, 再现多孔介质中材料相变、基质热致变形和冻结破坏过程, 突破了传统连续性模型求解这类破坏问题时面临的瓶颈, 为深入研究多孔介质冻融破坏过程和破坏机理提供了有效途径.

     

  • 图  1  物质点间的相互作用

    Figure  1.  Interaction between material points ${x_p}$ and ${x'_p}$ in PD theory

    图  2  PD模型中热键

    Figure  2.  T-bonds in PD model

    图  3  热−力耦合模型数值计算程序流程图

    Figure  3.  Flow chart of numerical program of thermomechanical coupled model

    图  4  方板角冻结PD模拟结果

    Figure  4.  PD simulation results of square plate corner freezing

    图  5  相变界面位置比较

    Figure  5.  Comparison of phase change interface position

    图  6  受到双面温度载荷作用的正方形板

    Figure  6.  Square plate subjected to double side temperature load

    图  7  有限元(上)和近场动力学(下)模拟的t = 200 s时结果比较

    Figure  7.  Simulation result comparison of finite element and periynamics at t = 200 s

    图  8  近场动力学和有限元模拟得到的A, B, C点温度和位移时间历程比较

    Figure  8.  Comparison of temperature and displacement histories of points A, B and C obtained from peridynamics and finite element simulation

    图  9  含孔隙的砂浆方板

    Figure  9.  Mortar square plate with pores

    图  10  砂浆方板的冻结破坏过程

    Figure  10.  Frost failure process of mortar plate

  • [1] 苏怀智, 谢威. 寒区水工混凝土冻融损伤及其防控研究进展. 硅酸盐通报, 2021, 40(4): 1053-1071 (Su Huaizhi, Xie Wei. Review on frost damages of hydraulic concrete in cold region and its preventive control. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1053-1071 (in Chinese) doi: 10.16552/j.cnki.issn1001-1625.2021.04.001
    [2] 吴鹏程, 杨全兵, 徐俊辉等. 低危害除冰盐对水泥混凝土盐冻破坏的影响及其机理. 建筑材料学报, 2020, 23(2): 317-321, 327 (Wu Pengcheng, Yang Quanbing, Xu Junhui, et al. Effects of a low-harm deicing salt on the salt-frost scaling of concrete and its mechanism. Journal of Building Materials, 2020, 23(2): 317-321, 327 (in Chinese)
    [3] 凌贤长, 罗军, 耿琳等. 季节冻土区非饱和膨胀土水–热–变形耦合冻胀模型. 岩土工程学报, 2022, 44(7): 1255-1265 (Ling Xianzhang, Luo Jun, Geng Lin, et al. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265 (in Chinese)
    [4] 党昕, 孟多, 高慧. 焓法与显热容法在建筑相变蓄热技术数值模拟中的应用. 辽宁工业大学学报(自然科学版), 2021, 41(3): 188-194 (Dang Xin, Meng Duo, Gao Hui. Application of enthalpy method and apparent heat capacity method in numerical simulation for phase change heat storage technology in buildings. Journal of Liaoning University of Technology (Natural Science Edition) , 2021, 41(3): 188-194 (in Chinese) doi: 10.15916/j.issn1674-3261.2021.03.013
    [5] 陈臻, 舒昌, 张良奇等. 基于相场-格子Boltzmann通量求解器的固-液相变模拟. 中国科学: 物理学 力学 天文学, 2022, 52(10): 27-36 (Chen Zhen, Shu Chang, Zhang liangqi, et al. Phase-field-lattice boltzmann flux solver for simulations of solid-liquid phase change. Scientia Sinica:Physica,Mechanica &Astronomica, 2022, 52(10): 27-36 (in Chinese)
    [6] 顾元宪, 周业涛, 赵国忠. 相变传热问题的灵敏度分析与优化设计方法. 力学学报, 2006, 38(1): 66-72 (Gu Yuanxian, Zhou Yetao, Zhao Guozhong. Sensitivity analysis and design optimization methods for problems of heat transfer with phase change. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 66-72 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.01.009
    [7] 霍宇涛, 庞晓文, 饶中浩. 基于焓法的固-液相变格子Boltzmann模型. 工程热物理学报, 2021, 42(12): 3201-3206 (Huo Yutao, Pang Xiaowen, Rao Zhonghao. The enthalpy based lattice boltzmann model for solid-liquid phase change. Journal of Engineering Thermophysics, 2021, 42(12): 3201-3206 (in Chinese)
    [8] 孙思睿, 张杰, 倪明玖. 横向磁场下侧壁加热方腔熔化的数值模拟研究. 力学学报, 2022, 54(9): 2377-2386 (Sun Sirui, Zhang Jie, Ni Mingjiu. The numerical simulation of melting process in a lateral heated cavity under transverse magnetic fields. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2377-2386 (in Chinese) doi: 10.6052/0459-1879-22-155
    [9] 刘中良, 马重芳, 孙旋. 相变潜热随温度变化对固-液相变过程的影响. 太阳能学报, 2003, 1: 53-57 (Liu Zhongliang, Ma Chongfang, Sun Xuan. The influences of latent heat variation with temperature on solid-liquid phase change processes. Acta Energiae Solaris Sinica, 2003, 1: 53-57 (in Chinese) doi: 10.3321/j.issn:0254-0096.2003.01.012
    [10] 周扬, 周国庆. 土体一维冻结问题温度场半解析解. 岩土力学, 2011, 32(S1): 309-313 (Zhou Yang, Zhou Guoqing. Semi-analytical solution for temperature field of one-dimensional soil freezing problem. Rock and Soil Mechanics, 2011, 32(S1): 309-313 (in Chinese) doi: 10.16285/j.rsm.2011.s1.034
    [11] Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids. 2000, 48(1): 175-209
    [12] 黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用. 力学进展, 2010, 40(4): 448-459

    Huang Dan, Zhang Qing, Qiao Pizhong, et al. A review on peridynamics (PD) method and its applications, Advances in Mechanics, 2010, 40(4): 448-459 (in Chinese)
    [13] 顾鑫, 章青, Erdogan Madenci. 多物理场耦合作用分析的近场动力学理论与方法. 力学进展, 2019, 49: 576-598

    Gu Xin, Zhang Qing, Erdogan Madenci. Review of peridynamics for multi-physics coupling modeling, Advances in Mechanics, 2019, 49: 576-598 (in Chinese)
    [14] Gerstle WH, Silling SA, Read D, et al. Peridynamic simulation of electromigration. CMC-Computers Materials & Continua, 2008, 8: 75-92
    [15] Bobaru F, Duangpanya M. The peridynamic formulation for transient heat conduction. International Journal of Heat and Mass Transfer, 2010, 53: 4047-4059 doi: 10.1016/j.ijheatmasstransfer.2010.05.024
    [16] Oterkus S. Peridynamics for the solution of multiphysics problems. [PhD Thesis]. Tucson: The University of Arizona, 2015
    [17] Agwai A, Guven I, Madenci E. A new thermomechanical fracture analysis approach for 3D integration technology//IEEE 61st Electronic Components and Technology Conference (ECTC), 2011: 740-745
    [18] Oterkus S, Madenci E, Agwai A. Peridynamic thermal diffusion. Journal of Computational Physics, 2014, 265: 71-96 doi: 10.1016/j.jcp.2014.01.027
    [19] Liao Y, Liu LS, Liu QW, et al. Peridynamic simulation of transient heat conduction problems in functionally gradient materials with cracks. Journal of Thermal Stresses, 2017, 40: 1484-1501 doi: 10.1080/01495739.2017.1358070
    [20] Madenci E, Barut A. Peridynamic Differential Operator for Numerical Analysis. Cham: Springer International Publishing, 2019
    [21] Nikolaev P, Sedighi M, Jivkov AP, et al. Analysis of heat transfer and water flow with phase change in saturated porous media by bond-based peridynamics. International Journal of Heat and Mass Transfer, 2022, 185: 122327 doi: 10.1016/j.ijheatmasstransfer.2021.122327
    [22] Nikolaev P, Sedighi M, Jivkov AP, et al. Non-local modelling of heat conduction with phase change//UK Association for Computational Mechanics (UKACM) Conference 2021, Loughborough University, 2021
    [23] Oterkus S, Madenci E. Peridynamic modeling of fuel pellet cracking. Engineering Fracture Mechanics, 2017, 176: 23-37 doi: 10.1016/j.engfracmech.2017.02.014
    [24] 王彩云, 姜冬菊, 黄丹. 基于常规态型近场动力学的热力耦合变形破坏分析. 应用力学学报, 2020, 37(3): 938-944 + 1382 (Wang Caiyun, Jiang Dongju, Huang Dan. Coupled thermo-mechanical deformation and failure analysis based on ordinary state-based peridynamics. Chinese Journal of Applied Mechanics, 2020, 37(3): 938-944 + 1382 (in Chinese) doi: 10.11776/cjam.37.03.E107
    [25] Kilic B, Madenci E. Peridynamic theory for thermomechanical analysis. IEEE Transactions on Advanced Packaging, 2010, 33: 97-105 doi: 10.1109/TADVP.2009.2029079
    [26] Zhang H, Qiao PZ. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading. Engineering Fracture Mechanics, 2018, 189: 81-97 doi: 10.1016/j.engfracmech.2017.09.023
    [27] Jeon BS, Stewart RJ, Ahmed IZ. Peridynamic simulations of brittle structures with thermal residual deformation: Strengthening and structural reactivity of glasses under impacts. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 2015, 471: 2015,0231 doi: 10.1098/rspa.2015.0231
    [28] 马玉娥, 杨萌, 孙文博. 基于近场动力学理论的热障涂层热冲击开裂行为. 航空学报, 2022, 43(6): 238-247 (Ma Yue, Yang Meng, Sun Wenbo. Cracking behavior of thermal barrier coatings after thermal shock based on peridynamics theory. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 238-247 (in Chinese)
    [29] Agwai A. A peridynamic approach for coupled fields. [PhD Thesis]. Tucson: The University of Arizona, 2011
    [30] Oterkus S, Madenci E. Crack growth prediction in fully-coupled thermal and deformation fields using peridynamic theory//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2013: 1477
    [31] Oterkus S, Madenci E, Agwai A. Fully coupled peridynamic thermomechanics. Journal of the Mechanics and Physics of Solids, 2014, 64: 1-23 doi: 10.1016/j.jmps.2013.10.011
    [32] Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 2005, 83: 1526-1535 doi: 10.1016/j.compstruc.2004.11.026
    [33] Madenci E, Oterkus E. Peridynamic Theory and Its Applications. New York: Springer, 2014
    [34] Kovačević I, Poredoš A, Šarler B. Solving the stefan problem with the radial basis function collocation mehod, Numerical Heat Transfer: Part B: Fundamentals, 2003, 44(6), 575-599
    [35] Chen WH, Gu X, Zhang Q, et al. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Engineering Fracture Mechanics, 2021, 242: 107463 doi: 10.1016/j.engfracmech.2020.107463
  • 加载中
图(10)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  100
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 录用日期:  2022-11-30
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回