[1] |
苏怀智, 谢威. 寒区水工混凝土冻融损伤及其防控研究进展. 硅酸盐通报, 2021, 40(4): 1053-1071 (Su Huaizhi, Xie Wei. Review on frost damages of hydraulic concrete in cold region and its preventive control. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1053-1071 (in Chinese) doi: 10.16552/j.cnki.issn1001-1625.2021.04.001
|
[2] |
吴鹏程, 杨全兵, 徐俊辉等. 低危害除冰盐对水泥混凝土盐冻破坏的影响及其机理. 建筑材料学报, 2020, 23(2): 317-321, 327 (Wu Pengcheng, Yang Quanbing, Xu Junhui, et al. Effects of a low-harm deicing salt on the salt-frost scaling of concrete and its mechanism. Journal of Building Materials, 2020, 23(2): 317-321, 327 (in Chinese)
|
[3] |
凌贤长, 罗军, 耿琳等. 季节冻土区非饱和膨胀土水–热–变形耦合冻胀模型. 岩土工程学报, 2022, 44(7): 1255-1265 (Ling Xianzhang, Luo Jun, Geng Lin, et al. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265 (in Chinese)
|
[4] |
党昕, 孟多, 高慧. 焓法与显热容法在建筑相变蓄热技术数值模拟中的应用. 辽宁工业大学学报(自然科学版), 2021, 41(3): 188-194 (Dang Xin, Meng Duo, Gao Hui. Application of enthalpy method and apparent heat capacity method in numerical simulation for phase change heat storage technology in buildings. Journal of Liaoning University of Technology (Natural Science Edition) , 2021, 41(3): 188-194 (in Chinese) doi: 10.15916/j.issn1674-3261.2021.03.013
|
[5] |
陈臻, 舒昌, 张良奇等. 基于相场-格子Boltzmann通量求解器的固-液相变模拟. 中国科学: 物理学 力学 天文学, 2022, 52(10): 27-36 (Chen Zhen, Shu Chang, Zhang liangqi, et al. Phase-field-lattice boltzmann flux solver for simulations of solid-liquid phase change. Scientia Sinica:Physica,Mechanica &Astronomica, 2022, 52(10): 27-36 (in Chinese)
|
[6] |
顾元宪, 周业涛, 赵国忠. 相变传热问题的灵敏度分析与优化设计方法. 力学学报, 2006, 38(1): 66-72 (Gu Yuanxian, Zhou Yetao, Zhao Guozhong. Sensitivity analysis and design optimization methods for problems of heat transfer with phase change. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 66-72 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.01.009
|
[7] |
霍宇涛, 庞晓文, 饶中浩. 基于焓法的固-液相变格子Boltzmann模型. 工程热物理学报, 2021, 42(12): 3201-3206 (Huo Yutao, Pang Xiaowen, Rao Zhonghao. The enthalpy based lattice boltzmann model for solid-liquid phase change. Journal of Engineering Thermophysics, 2021, 42(12): 3201-3206 (in Chinese)
|
[8] |
孙思睿, 张杰, 倪明玖. 横向磁场下侧壁加热方腔熔化的数值模拟研究. 力学学报, 2022, 54(9): 2377-2386 (Sun Sirui, Zhang Jie, Ni Mingjiu. The numerical simulation of melting process in a lateral heated cavity under transverse magnetic fields. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2377-2386 (in Chinese) doi: 10.6052/0459-1879-22-155
|
[9] |
刘中良, 马重芳, 孙旋. 相变潜热随温度变化对固-液相变过程的影响. 太阳能学报, 2003, 1: 53-57 (Liu Zhongliang, Ma Chongfang, Sun Xuan. The influences of latent heat variation with temperature on solid-liquid phase change processes. Acta Energiae Solaris Sinica, 2003, 1: 53-57 (in Chinese) doi: 10.3321/j.issn:0254-0096.2003.01.012
|
[10] |
周扬, 周国庆. 土体一维冻结问题温度场半解析解. 岩土力学, 2011, 32(S1): 309-313 (Zhou Yang, Zhou Guoqing. Semi-analytical solution for temperature field of one-dimensional soil freezing problem. Rock and Soil Mechanics, 2011, 32(S1): 309-313 (in Chinese) doi: 10.16285/j.rsm.2011.s1.034
|
[11] |
Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids. 2000, 48(1): 175-209
|
[12] |
黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用. 力学进展, 2010, 40(4): 448-459Huang Dan, Zhang Qing, Qiao Pizhong, et al. A review on peridynamics (PD) method and its applications, Advances in Mechanics, 2010, 40(4): 448-459 (in Chinese)
|
[13] |
顾鑫, 章青, Erdogan Madenci. 多物理场耦合作用分析的近场动力学理论与方法. 力学进展, 2019, 49: 576-598Gu Xin, Zhang Qing, Erdogan Madenci. Review of peridynamics for multi-physics coupling modeling, Advances in Mechanics, 2019, 49: 576-598 (in Chinese)
|
[14] |
Gerstle WH, Silling SA, Read D, et al. Peridynamic simulation of electromigration. CMC-Computers Materials & Continua, 2008, 8: 75-92
|
[15] |
Bobaru F, Duangpanya M. The peridynamic formulation for transient heat conduction. International Journal of Heat and Mass Transfer, 2010, 53: 4047-4059 doi: 10.1016/j.ijheatmasstransfer.2010.05.024
|
[16] |
Oterkus S. Peridynamics for the solution of multiphysics problems. [PhD Thesis]. Tucson: The University of Arizona, 2015
|
[17] |
Agwai A, Guven I, Madenci E. A new thermomechanical fracture analysis approach for 3D integration technology//IEEE 61st Electronic Components and Technology Conference (ECTC), 2011: 740-745
|
[18] |
Oterkus S, Madenci E, Agwai A. Peridynamic thermal diffusion. Journal of Computational Physics, 2014, 265: 71-96 doi: 10.1016/j.jcp.2014.01.027
|
[19] |
Liao Y, Liu LS, Liu QW, et al. Peridynamic simulation of transient heat conduction problems in functionally gradient materials with cracks. Journal of Thermal Stresses, 2017, 40: 1484-1501 doi: 10.1080/01495739.2017.1358070
|
[20] |
Madenci E, Barut A. Peridynamic Differential Operator for Numerical Analysis. Cham: Springer International Publishing, 2019
|
[21] |
Nikolaev P, Sedighi M, Jivkov AP, et al. Analysis of heat transfer and water flow with phase change in saturated porous media by bond-based peridynamics. International Journal of Heat and Mass Transfer, 2022, 185: 122327 doi: 10.1016/j.ijheatmasstransfer.2021.122327
|
[22] |
Nikolaev P, Sedighi M, Jivkov AP, et al. Non-local modelling of heat conduction with phase change//UK Association for Computational Mechanics (UKACM) Conference 2021, Loughborough University, 2021
|
[23] |
Oterkus S, Madenci E. Peridynamic modeling of fuel pellet cracking. Engineering Fracture Mechanics, 2017, 176: 23-37 doi: 10.1016/j.engfracmech.2017.02.014
|
[24] |
王彩云, 姜冬菊, 黄丹. 基于常规态型近场动力学的热力耦合变形破坏分析. 应用力学学报, 2020, 37(3): 938-944 + 1382 (Wang Caiyun, Jiang Dongju, Huang Dan. Coupled thermo-mechanical deformation and failure analysis based on ordinary state-based peridynamics. Chinese Journal of Applied Mechanics, 2020, 37(3): 938-944 + 1382 (in Chinese) doi: 10.11776/cjam.37.03.E107
|
[25] |
Kilic B, Madenci E. Peridynamic theory for thermomechanical analysis. IEEE Transactions on Advanced Packaging, 2010, 33: 97-105 doi: 10.1109/TADVP.2009.2029079
|
[26] |
Zhang H, Qiao PZ. An extended state-based peridynamic model for damage growth prediction of bimaterial structures under thermomechanical loading. Engineering Fracture Mechanics, 2018, 189: 81-97 doi: 10.1016/j.engfracmech.2017.09.023
|
[27] |
Jeon BS, Stewart RJ, Ahmed IZ. Peridynamic simulations of brittle structures with thermal residual deformation: Strengthening and structural reactivity of glasses under impacts. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 2015, 471: 2015,0231 doi: 10.1098/rspa.2015.0231
|
[28] |
马玉娥, 杨萌, 孙文博. 基于近场动力学理论的热障涂层热冲击开裂行为. 航空学报, 2022, 43(6): 238-247 (Ma Yue, Yang Meng, Sun Wenbo. Cracking behavior of thermal barrier coatings after thermal shock based on peridynamics theory. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 238-247 (in Chinese)
|
[29] |
Agwai A. A peridynamic approach for coupled fields. [PhD Thesis]. Tucson: The University of Arizona, 2011
|
[30] |
Oterkus S, Madenci E. Crack growth prediction in fully-coupled thermal and deformation fields using peridynamic theory//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2013: 1477
|
[31] |
Oterkus S, Madenci E, Agwai A. Fully coupled peridynamic thermomechanics. Journal of the Mechanics and Physics of Solids, 2014, 64: 1-23 doi: 10.1016/j.jmps.2013.10.011
|
[32] |
Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 2005, 83: 1526-1535 doi: 10.1016/j.compstruc.2004.11.026
|
[33] |
Madenci E, Oterkus E. Peridynamic Theory and Its Applications. New York: Springer, 2014
|
[34] |
Kovačević I, Poredoš A, Šarler B. Solving the stefan problem with the radial basis function collocation mehod, Numerical Heat Transfer: Part B: Fundamentals, 2003, 44(6), 575-599
|
[35] |
Chen WH, Gu X, Zhang Q, et al. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking. Engineering Fracture Mechanics, 2021, 242: 107463 doi: 10.1016/j.engfracmech.2020.107463
|