MECHANICAL CHARACTERISTICS OF THE DEFORMATION OF BIRD FEATHERS IN AIRFLOW
-
摘要: 鸟类羽毛在飞行中的物理性质是仿生力学关心的重要问题之一. 基于CFD/CSD数值模拟方法研究了羽毛微结构在气流作用下的变形和力学特征, 揭示了鸟类静止时羽毛蓬松、而在飞行状态下紧贴皮肤表面保持表面光滑的物理机制. 首先, 通过对鸟类羽毛在显微镜下的观察, 将羽毛分解成典型简单微结构以模仿羽枝单元, 从而对羽毛外形和结构进行建模, 之后, 采用CFD/CSD方法分析比较了两种典型羽枝模型结构(片状和枝状羽枝单元)的变形和力学特征, 最后, 基于上述片状羽枝模型进一步研究了来流方向对羽枝变形的影响机理及多根排列羽枝的变形和力学特征. 结果表明: 在一定风向的范围内, 羽毛在气流下都具有保持紧贴皮肤表面的变形趋势, 这种紧贴壁面的趋势只有在气流与羽轴几乎垂直时才会改变; 在来流侧滑角为
$ 45^\circ $ 时, 羽枝沿皮肤表面法向下压的变形最为显著, 尖端位移达原始高度的约97%; 多根排列的羽枝在顺流方向气动载荷逐渐下降, 与迎风首根羽枝最大差距约11%. 此研究工作对于理解鸟类飞行时羽毛的力学特性有明确的学术价值.Abstract: The physical properties of bird feathers during flight constitute one of the significant concerns in the field of biomimetic mechanics. In this paper, the CFD/CSD numerical simulation method is adopted to calculate and analyze the deformation as well as mechanical characteristics of feather microstructure in the airflow, revealing the physical mechanism by which feathers exhibit thick and fluffy at rest, but keep close to the bird’s skin surface to maintain the surface smoothness during flight. Initially, by observing the bird feathers with optical microscope, the feather structure is decomposed into typical simple microstructures to imitate the barb element, thus modeling the shape and structure of the feather. Then, the deformation and mechanical characteristics of two typical modeling structures (flaky barb element and branch barb element) are analyzed and compared by CFD/CSD method. Finally, based on the aforementioned flaky barb element model, further research is conducted on the influence mechanism of the incoming flow direction on the deformation feature of barb element, as well as the deformation and mechanical characteristics of multiple arranged barbs. The results show that within a certain range of inflow direction, the feather maintains the deformation tendency of keeping close to the bird’s skin surface in the airflow. This tendency will change only when the airflow is almost perpendicular to the feather rachis. When the sideslip angle of inflow is$ 45^\circ $ , the downward deformation of barb element along the skin surface normal is the most significant, with a tip displacement of approximately 97% of its initial height. The multi-row arranged barb elements experienced a gradual decrease in aerodynamic load in the flow direction, with a maximum difference of about 11% compared to the leading barb element against the wind. This research has a clear academic value for understanding the mechanical properties of bird feathers when flying.-
Key words:
- bionic mechanics /
- bird feather /
- feather microstructure /
- fluid-structure coupling /
- CFD/CSD
-
表 1 羽枝单元材料参数
Table 1. Material properties of barb elements
Density/(kg·m−3) Young's modulus/GPa Poisson's ratio barb 2.50 3.04 0.30 barbules 2.50 0.77 0.30 表 2 羽枝及羽小枝面网格分布
Table 2. Grid distribution of barb and barbules
Coarse Medium Fine ${N_r} \times {N_1}$ $38 \times 81$ $48 \times 102$ $60 \times 128$ ${N_2} \times {N_5}$ $22 \times 20$ $28 \times 25$ $35 \times 32$ 表 3 羽枝位移及气动力载荷
Table 3. Displacement and aerodynamic load of barb
Flaky barb Branch barb $\Delta {\theta _\eta }/(^\circ )$ −4.81 −2.58 $\Delta {\theta _\zeta }/(^\circ )$ 6.77 10.08 $\Delta y/{y_{{\rm{tip}},{\rm{rig}}} }/\text{%}$ −21.76 −3.59 $\Delta {y_{{\rm{tip}}} }/{y_{{\rm{tip}},{\rm{rig}}} }/\text{%}$ −77.81 −23.46 $ {C_{m\eta }} $ −70.51 −19.49 $ {C_{m\zeta }} $ 108.39 79.76 ${C_{fy}}$ −60.33 −10.02 -
[1] Videler JJ. Avian Flight. Oxford: Oxford University Press, 2006 [2] Lincoln FC, Peterson SR. Migration of Birds. Washington: Fish & Wildlife Service, US Department of the Interior, 1979 [3] Ryan P. The wandering albatross. Incon of the Oceans, 2003, 56(1): 29-35 [4] Tucker VA, Heine C. Aerodynamics of gliding flight in a harris’ hawk, parabuteo unicinctus. Journal of Experimental Biology, 1990, 149(1): 469-489 doi: 10.1242/jeb.149.1.469 [5] Parfitt AR, Vincent JFV. Drag reduction in a swimming humboldt penguin, spheniscus humboldti, when the boundary layer is turbulent. Journal of Bionic Engineering, 2005, 2(2): 57-62 doi: 10.1007/BF03399481 [6] Lznearzs B. The aerodynamic performance of the wing in red-shouldered hawk buteo linearis and a possible aeroelastic role of wing-tip slots. Short Communications, 1981, 123(2): 239-247 [7] Shelton A, Tomar A, Prasad J, et al. Active multiple winglets for improved unmanned-aerial-vehicle performance. Journal of Aircraft, 2006, 43(1): 110-116 doi: 10.2514/1.13987 [8] KleinHeerenbrink M, Christoffer Johansson L, Hedenström A. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. Journal of the Royal Society Interface, 2017, 14(130): 20170099 [9] Muthuramalingam M, Talboys E, Wagner H, et al. Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing. Bioinspiration and Biomimetics, 2020, 16(2): 026010 [10] Moreau DJ, Doolan CJ. Noise-reduction mechanism of a flat-plate serrated trailing edge. AIAA Journal, 2013, 51(10): 2513-2522 doi: 10.2514/1.J052436 [11] Simplicio IB, Nino GF, Breidenthal RE. Aerodynamic effects of trailing edge serrations at low reynolds numbers//AIAA Scitech Forum 2022, 2022 [12] Arivoli D, Singh I, Suriyanarayanan P. Rudimentary emulation of covert feathers on low-AR wings for poststall lift enhancement. AIAA Journal, 2020, 58(2): 501-516 doi: 10.2514/1.J058562 [13] 林立辉, 叶坤, 叶正寅. 涡襟翼在不同雷诺数下的控制分离特性研究. 航空工程进展, 2021, 12(3): 37-45 (Lin Lihui, Ye Kun, Ye Zhengyin. Research on the separation control characteristics of vortex flap under different reynolds numbers. Advance in Aeronautical Science and Engineering, 2021, 12(3): 37-45 (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.03.05 [14] Meyer R, Hage W, Bechert DW, et al. Separation control by self-activated movable flaps. AIAA Journal, 2007, 45(1): 191-199 doi: 10.2514/1.23507 [15] Reiswich A, Finster M, Heinrich M, et al. Stereo vision investigation of elastic flap kinematics in separated flow. Journal of Fluids and Structures, 2022, 114: 103711 doi: 10.1016/j.jfluidstructs.2022.103711 [16] 郝文星, 李春. 自适应襟翼流动控制改进方法的提出与验证. 中国电机工程学报, 2020, 40(14): 4538-4546 (Hao Wenxing, Li Chun. Proposal and validation of improving methods for flow control performance of the adaptive flap. Proceedings of the CSEE, 2020, 40(14): 4538-4546 (in Chinese) doi: 10.13334/J.0258-8013.PCSEE.191395 [17] Othman AK, Nair NJ, Sandeep A, et al. Numerical and experimental study of a covert-inspired passively deployable flap for aerodynamic lift enhancement//AIAA Aviation 2022 Forum, 2022 [18] Nair NJ, Goza A. Effects of torsional stiffness and inertia on a passively deployable flap for aerodynamic lift enhancement//AIAA SciTech Forum, 2022 [19] Liu T, Montefort J, Liou W, et al. Effects of flexible fin on low-frequency oscillation in poststall flows. AIAA Journal, 2010, 48(6): 1235-1247 doi: 10.2514/1.J050205 [20] Reiswich A, Finster M, Heinrich M, et al. Effect of flexible flaps on lift and drag of laminar profile flow. Energies, 2020, 13(5): 1-16 [21] 宋笔锋, 稂鑫雨, 薛栋等. 鸟翼空气动力学机理的研究现状和进展综述. 中国科学, 2022, 52(6): 893-910 (Song Bifeng, Lang Xinyu, Xue Dong, et al. A review of the research status and progress on the aerodynamic mechanism of bird wings. Scientia Sinical Technologica, 2022, 52(6): 893-910 (in Chinese) [22] Quan P, Zhong S, Liu Q, et al. Attenuation of flow separation using herringbone riblets at M∞=5. AIAA Journal, 2019, 57(1): 142-152 doi: 10.2514/1.J057215 [23] Chen HW, Rao FG, Zhang DY, et al. Drag reduction study about bird feather herringbone riblets. Applied Mechanics and Materials, 2014, 461: 201-205 [24] Nugroho B, Hutchins N, Monty JP. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. International Journal of Heat and Fluid Flow, 2013, 41: 90-102 doi: 10.1016/j.ijheatfluidflow.2013.04.003 [25] Gao R, Chen K, Li Y, et al. Aerodynamic performance enhancement of horizontal axis wind turbines by herringbone groove structure on blades. Mechanisms and Machine Science, 2022, 111: 709-720 [26] Liu Q, Zhong S, Li L. Investigation of riblet geometry and start locations of herringbone riblets on pressure losses in a linear cascade at low Reynolds numbers. Journal of Turbomachinery, 2020, 142(10): 1-14 [27] Liu Q, Zhong S, Li L. Reduction of pressure losses in a linear cascade using herringbone riblets//Turbo Expo: Power for Land, Sea, and Air, 2017 [28] Li Q, Pan M, Zhou Q, et al. Turbulent drag modification in open channel flow over an anisotropic porous wall. Physics of Fluids, 2020, 32(1): 015117 doi: 10.1063/1.5130647 [29] Ali SAS, Azarpeyvand M, Da Silva CRI. Trailing-edge flow and noise control using porous treatments. Journal of Fluid Mechanics, 2018, 850: 83-119 doi: 10.1017/jfm.2018.430 [30] Geyer T, Sarradj E, Fritzsche C. Measurement of the noise generation at the trailing edge of porous airfoils. Experiments in Fluids, 2010, 48(2): 291-308 doi: 10.1007/s00348-009-0739-x [31] Wang S, Yang Z, Gong G, et al. Icephobicity of penguins spheniscus humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. Journal of Physical Chemistry C, 2016, 120(29): 15923-15929 doi: 10.1021/acs.jpcc.5b12298 [32] Ma L, Li H, Hu H. An experimental study on the dynamics of water droplet impingement onto bio-inspired surfaces with different wettabilities//55th AIAA Aerospace Sciences Meeting, 2017 [33] 叶正寅, 洪正, 武洁. 柔性仿羽毛结构抑制边界层转捩的初步探索. 空气动力学学报, 2020, 1825(6): 1173-1183 (Ye Zhengyin, Hong Zheng, Wu Jie. Suppression of flexible feather-like structure on boundary layer transition. Acta Aerodynamica Sinica, 2020, 1825(6): 1173-1183 (in Chinese) doi: 10.7638/kqdlxxb-2020.0094 [34] Ye K, Ye Z, Li C, et al. Effects of the aerothermoelastic deformation on the performance of the three-dimensional hypersonic inlet. Aerospace Science and Technology, 2019, 84: 747-762 doi: 10.1016/j.ast.2018.11.015 [35] Ye K, Ye Z, Feng Z, et al. Numerical investigation on the aerothermoelastic deformation of the hypersonic wing. Acta Astronautica, 2019, 160: 76-89 doi: 10.1016/j.actaastro.2019.04.028 [36] 洪正, 叶正寅. 各向异性柔性壁上二维T-S 波演化的数值研究. 力学学报, 2021, 53(5): 1302-1312Hong Zheng, Ye Zhengyin, Numerical investigation of the evolution of two-dimensional T-S waves on an anisotropic compliant wall. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1302-1312 (in Chinese) [37] Weiss JM, Smith WA. Preconditioning applied to variable and constant density flow. AIAA Journal, 1995, 33(11): 2050-2057 doi: 10.2514/3.12946 [38] Lopes JL, Païdoussis MP, Semler C. Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 2: The equations of motion. Journal of Fluids and Structures, 2002, 16(6): 715-737 [39] 叶坤. 吸气式高速飞行器关键热气动弹性问题研究. [博士论文]. 西安: 西北工业大学, 2018Ye Kun. Research on the critical aerothermoelastic problems for air-breathing hypersonic vehicle. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese) [40] 高佳丽. 长耳鸮初级飞羽阻尼减振特性仿生研究. [博士论文]. 大连: 大连理工大学, 2015Gao Jiali. Bionic study on the damping vibration characteristic of long-eared owl primary feather. [PhD Thesis]. Dalian: Dalian University of Technology, 2015 (in Chinese) -