EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鸟类羽毛在气流中变形的力学特性研究

吴康灵 叶正寅 叶坤 洪正

吴康灵, 叶正寅, 叶坤, 洪正. 鸟类羽毛在气流中变形的力学特性研究. 力学学报, 2023, 55(4): 874-884 doi: 10.6052/0459-1879-22-520
引用本文: 吴康灵, 叶正寅, 叶坤, 洪正. 鸟类羽毛在气流中变形的力学特性研究. 力学学报, 2023, 55(4): 874-884 doi: 10.6052/0459-1879-22-520
Wu Kangling, Ye Zhengyin, Ye Kun, Hong Zheng. Mechanical characteristics of the deformation of bird feathers in airflow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 874-884 doi: 10.6052/0459-1879-22-520
Citation: Wu Kangling, Ye Zhengyin, Ye Kun, Hong Zheng. Mechanical characteristics of the deformation of bird feathers in airflow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 874-884 doi: 10.6052/0459-1879-22-520

鸟类羽毛在气流中变形的力学特性研究

doi: 10.6052/0459-1879-22-520
基金项目: 国家自然科学基金(12072281)和翼型、叶栅空气动力学国家级重点实验室基金(614220121030224)资助项目
详细信息
    通讯作者:

    叶正寅, 教授, 主要研究方向为非定常空气动力学、流固耦合力学和流动控制. E-mail: yezy@nwpu.edu.cn

    叶坤, 副研究员, 主要研究方向为气动弹性力学、高超声速流固热多场耦合和流动控制. E-mail: yekun@nwpu.edu.cn

  • 中图分类号: O355

MECHANICAL CHARACTERISTICS OF THE DEFORMATION OF BIRD FEATHERS IN AIRFLOW

  • 摘要: 鸟类羽毛在飞行中的物理性质是仿生力学关心的重要问题之一. 基于CFD/CSD数值模拟方法研究了羽毛微结构在气流作用下的变形和力学特征, 揭示了鸟类静止时羽毛蓬松、而在飞行状态下紧贴皮肤表面保持表面光滑的物理机制. 首先, 通过对鸟类羽毛在显微镜下的观察, 将羽毛分解成典型简单微结构以模仿羽枝单元, 从而对羽毛外形和结构进行建模, 之后, 采用CFD/CSD方法分析比较了两种典型羽枝模型结构(片状和枝状羽枝单元)的变形和力学特征, 最后, 基于上述片状羽枝模型进一步研究了来流方向对羽枝变形的影响机理及多根排列羽枝的变形和力学特征. 结果表明: 在一定风向的范围内, 羽毛在气流下都具有保持紧贴皮肤表面的变形趋势, 这种紧贴壁面的趋势只有在气流与羽轴几乎垂直时才会改变; 在来流侧滑角为$ 45^\circ $时, 羽枝沿皮肤表面法向下压的变形最为显著, 尖端位移达原始高度的约97%; 多根排列的羽枝在顺流方向气动载荷逐渐下降, 与迎风首根羽枝最大差距约11%. 此研究工作对于理解鸟类飞行时羽毛的力学特性有明确的学术价值.

     

  • 图  1  经典串行CFD/CSD方法

    Figure  1.  Classical serial CFD/CSD method

    图  2  机翼变形云图

    Figure  2.  Contours of the wing deformation

    图  3  前后缘变形量对比

    Figure  3.  Comparison of the deformation of leading and trailing edges

    图  4  鸟类羽毛的微结构

    Figure  4.  Microstructure of bird feathers

    图  5  翘起的羽毛末梢

    Figure  5.  Tilted feather tip

    图  6  羽毛结构及简化的羽枝模型: (a) 片状羽枝模型和(b) 枝状羽枝模型

    Figure  6.  Feather structure and simplified barb model: (a) flaky barb model and (b) branch barb model

    图  7  单根羽枝模型

    Figure  7.  Single barb model

    图  8  流场网格及拓扑结构

    Figure  8.  Fluid mesh and topology

    图  9  网格收敛曲线

    Figure  9.  Convergence curve of mesh number

    图  10  羽枝位移收敛曲线

    Figure  10.  Displacement convergence curve of barb

    图  11  片状羽枝单位移云图

    Figure  11.  Contours of the deformation of flaky barb element

    图  12  枝状羽枝单元位移云图

    Figure  12.  Contours of the deformation of branch barb element

    图  13  羽枝单元的局部坐标系

    Figure  13.  Local coordinate system of the barb element

    图  14  羽枝位移随来流侧滑角$\beta $的变化

    Figure  14.  Variation of barb displacement with angle of sideslip$\beta $

    图  15  刚性/柔性羽枝气动力及力矩随来流侧滑角$\beta $的变化

    Figure  15.  Variation of aerodynamic force and moment of rigid/flexible barb with angle of sideslip$\beta $

    图  16  多根羽枝单元变形云图

    Figure  16.  Contours of the deformation of multiple barb elements

    图  17  多根羽枝气动载荷随顺流方向位置的变化

    Figure  17.  Variation of aerodynamic loads on multiple barbs with positions in the downstream direction

    表  1  羽枝单元材料参数

    Table  1.   Material properties of barb elements

    Density/(kg·m−3)Young's modulus/GPaPoisson's ratio
    barb2.503.040.30
    barbules2.500.770.30
    下载: 导出CSV

    表  2  羽枝及羽小枝面网格分布

    Table  2.   Grid distribution of barb and barbules

    CoarseMediumFine
    ${N_r} \times {N_1}$$38 \times 81$$48 \times 102$$60 \times 128$
    ${N_2} \times {N_5}$$22 \times 20$$28 \times 25$$35 \times 32$
    下载: 导出CSV

    表  3  羽枝位移及气动力载荷

    Table  3.   Displacement and aerodynamic load of barb

    Flaky barbBranch barb
    $\Delta {\theta _\eta }/(^\circ )$−4.81−2.58
    $\Delta {\theta _\zeta }/(^\circ )$6.7710.08
    $\Delta y/{y_{{\rm{tip}},{\rm{rig}}} }/\text{%}$−21.76−3.59
    $\Delta {y_{{\rm{tip}}} }/{y_{{\rm{tip}},{\rm{rig}}} }/\text{%}$−77.81−23.46
    $ {C_{m\eta }} $−70.51−19.49
    $ {C_{m\zeta }} $108.3979.76
    ${C_{fy}}$−60.33−10.02
    下载: 导出CSV
  • [1] Videler JJ. Avian Flight. Oxford: Oxford University Press, 2006
    [2] Lincoln FC, Peterson SR. Migration of Birds. Washington: Fish & Wildlife Service, US Department of the Interior, 1979
    [3] Ryan P. The wandering albatross. Incon of the Oceans, 2003, 56(1): 29-35
    [4] Tucker VA, Heine C. Aerodynamics of gliding flight in a harris’ hawk, parabuteo unicinctus. Journal of Experimental Biology, 1990, 149(1): 469-489 doi: 10.1242/jeb.149.1.469
    [5] Parfitt AR, Vincent JFV. Drag reduction in a swimming humboldt penguin, spheniscus humboldti, when the boundary layer is turbulent. Journal of Bionic Engineering, 2005, 2(2): 57-62 doi: 10.1007/BF03399481
    [6] Lznearzs B. The aerodynamic performance of the wing in red-shouldered hawk buteo linearis and a possible aeroelastic role of wing-tip slots. Short Communications, 1981, 123(2): 239-247
    [7] Shelton A, Tomar A, Prasad J, et al. Active multiple winglets for improved unmanned-aerial-vehicle performance. Journal of Aircraft, 2006, 43(1): 110-116 doi: 10.2514/1.13987
    [8] KleinHeerenbrink M, Christoffer Johansson L, Hedenström A. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. Journal of the Royal Society Interface, 2017, 14(130): 20170099
    [9] Muthuramalingam M, Talboys E, Wagner H, et al. Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing. Bioinspiration and Biomimetics, 2020, 16(2): 026010
    [10] Moreau DJ, Doolan CJ. Noise-reduction mechanism of a flat-plate serrated trailing edge. AIAA Journal, 2013, 51(10): 2513-2522 doi: 10.2514/1.J052436
    [11] Simplicio IB, Nino GF, Breidenthal RE. Aerodynamic effects of trailing edge serrations at low reynolds numbers//AIAA Scitech Forum 2022, 2022
    [12] Arivoli D, Singh I, Suriyanarayanan P. Rudimentary emulation of covert feathers on low-AR wings for poststall lift enhancement. AIAA Journal, 2020, 58(2): 501-516 doi: 10.2514/1.J058562
    [13] 林立辉, 叶坤, 叶正寅. 涡襟翼在不同雷诺数下的控制分离特性研究. 航空工程进展, 2021, 12(3): 37-45 (Lin Lihui, Ye Kun, Ye Zhengyin. Research on the separation control characteristics of vortex flap under different reynolds numbers. Advance in Aeronautical Science and Engineering, 2021, 12(3): 37-45 (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.03.05
    [14] Meyer R, Hage W, Bechert DW, et al. Separation control by self-activated movable flaps. AIAA Journal, 2007, 45(1): 191-199 doi: 10.2514/1.23507
    [15] Reiswich A, Finster M, Heinrich M, et al. Stereo vision investigation of elastic flap kinematics in separated flow. Journal of Fluids and Structures, 2022, 114: 103711 doi: 10.1016/j.jfluidstructs.2022.103711
    [16] 郝文星, 李春. 自适应襟翼流动控制改进方法的提出与验证. 中国电机工程学报, 2020, 40(14): 4538-4546 (Hao Wenxing, Li Chun. Proposal and validation of improving methods for flow control performance of the adaptive flap. Proceedings of the CSEE, 2020, 40(14): 4538-4546 (in Chinese) doi: 10.13334/J.0258-8013.PCSEE.191395
    [17] Othman AK, Nair NJ, Sandeep A, et al. Numerical and experimental study of a covert-inspired passively deployable flap for aerodynamic lift enhancement//AIAA Aviation 2022 Forum, 2022
    [18] Nair NJ, Goza A. Effects of torsional stiffness and inertia on a passively deployable flap for aerodynamic lift enhancement//AIAA SciTech Forum, 2022
    [19] Liu T, Montefort J, Liou W, et al. Effects of flexible fin on low-frequency oscillation in poststall flows. AIAA Journal, 2010, 48(6): 1235-1247 doi: 10.2514/1.J050205
    [20] Reiswich A, Finster M, Heinrich M, et al. Effect of flexible flaps on lift and drag of laminar profile flow. Energies, 2020, 13(5): 1-16
    [21] 宋笔锋, 稂鑫雨, 薛栋等. 鸟翼空气动力学机理的研究现状和进展综述. 中国科学, 2022, 52(6): 893-910 (Song Bifeng, Lang Xinyu, Xue Dong, et al. A review of the research status and progress on the aerodynamic mechanism of bird wings. Scientia Sinical Technologica, 2022, 52(6): 893-910 (in Chinese)
    [22] Quan P, Zhong S, Liu Q, et al. Attenuation of flow separation using herringbone riblets at M=5. AIAA Journal, 2019, 57(1): 142-152 doi: 10.2514/1.J057215
    [23] Chen HW, Rao FG, Zhang DY, et al. Drag reduction study about bird feather herringbone riblets. Applied Mechanics and Materials, 2014, 461: 201-205
    [24] Nugroho B, Hutchins N, Monty JP. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. International Journal of Heat and Fluid Flow, 2013, 41: 90-102 doi: 10.1016/j.ijheatfluidflow.2013.04.003
    [25] Gao R, Chen K, Li Y, et al. Aerodynamic performance enhancement of horizontal axis wind turbines by herringbone groove structure on blades. Mechanisms and Machine Science, 2022, 111: 709-720
    [26] Liu Q, Zhong S, Li L. Investigation of riblet geometry and start locations of herringbone riblets on pressure losses in a linear cascade at low Reynolds numbers. Journal of Turbomachinery, 2020, 142(10): 1-14
    [27] Liu Q, Zhong S, Li L. Reduction of pressure losses in a linear cascade using herringbone riblets//Turbo Expo: Power for Land, Sea, and Air, 2017
    [28] Li Q, Pan M, Zhou Q, et al. Turbulent drag modification in open channel flow over an anisotropic porous wall. Physics of Fluids, 2020, 32(1): 015117 doi: 10.1063/1.5130647
    [29] Ali SAS, Azarpeyvand M, Da Silva CRI. Trailing-edge flow and noise control using porous treatments. Journal of Fluid Mechanics, 2018, 850: 83-119 doi: 10.1017/jfm.2018.430
    [30] Geyer T, Sarradj E, Fritzsche C. Measurement of the noise generation at the trailing edge of porous airfoils. Experiments in Fluids, 2010, 48(2): 291-308 doi: 10.1007/s00348-009-0739-x
    [31] Wang S, Yang Z, Gong G, et al. Icephobicity of penguins spheniscus humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. Journal of Physical Chemistry C, 2016, 120(29): 15923-15929 doi: 10.1021/acs.jpcc.5b12298
    [32] Ma L, Li H, Hu H. An experimental study on the dynamics of water droplet impingement onto bio-inspired surfaces with different wettabilities//55th AIAA Aerospace Sciences Meeting, 2017
    [33] 叶正寅, 洪正, 武洁. 柔性仿羽毛结构抑制边界层转捩的初步探索. 空气动力学学报, 2020, 1825(6): 1173-1183 (Ye Zhengyin, Hong Zheng, Wu Jie. Suppression of flexible feather-like structure on boundary layer transition. Acta Aerodynamica Sinica, 2020, 1825(6): 1173-1183 (in Chinese) doi: 10.7638/kqdlxxb-2020.0094
    [34] Ye K, Ye Z, Li C, et al. Effects of the aerothermoelastic deformation on the performance of the three-dimensional hypersonic inlet. Aerospace Science and Technology, 2019, 84: 747-762 doi: 10.1016/j.ast.2018.11.015
    [35] Ye K, Ye Z, Feng Z, et al. Numerical investigation on the aerothermoelastic deformation of the hypersonic wing. Acta Astronautica, 2019, 160: 76-89 doi: 10.1016/j.actaastro.2019.04.028
    [36] 洪正, 叶正寅. 各向异性柔性壁上二维T-S 波演化的数值研究. 力学学报, 2021, 53(5): 1302-1312

    Hong Zheng, Ye Zhengyin, Numerical investigation of the evolution of two-dimensional T-S waves on an anisotropic compliant wall. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1302-1312 (in Chinese)
    [37] Weiss JM, Smith WA. Preconditioning applied to variable and constant density flow. AIAA Journal, 1995, 33(11): 2050-2057 doi: 10.2514/3.12946
    [38] Lopes JL, Païdoussis MP, Semler C. Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 2: The equations of motion. Journal of Fluids and Structures, 2002, 16(6): 715-737
    [39] 叶坤. 吸气式高速飞行器关键热气动弹性问题研究. [博士论文]. 西安: 西北工业大学, 2018

    Ye Kun. Research on the critical aerothermoelastic problems for air-breathing hypersonic vehicle. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese)
    [40] 高佳丽. 长耳鸮初级飞羽阻尼减振特性仿生研究. [博士论文]. 大连: 大连理工大学, 2015

    Gao Jiali. Bionic study on the damping vibration characteristic of long-eared owl primary feather. [PhD Thesis]. Dalian: Dalian University of Technology, 2015 (in Chinese)
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  102
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-03-11
  • 刊出日期:  2023-04-18

目录

    /

    返回文章
    返回