EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑诱导缝多段压裂水平井非均质改造压力动态模型研究

徐有杰 向祖平 张小涛 于梦男 余星颖

徐有杰, 向祖平, 张小涛, 于梦男, 余星颖. 考虑诱导缝多段压裂水平井非均质改造压力动态模型研究. 力学学报, 2023, 55(3): 1-13 doi: 10.6052/0459-1879-22-514
引用本文: 徐有杰, 向祖平, 张小涛, 于梦男, 余星颖. 考虑诱导缝多段压裂水平井非均质改造压力动态模型研究. 力学学报, 2023, 55(3): 1-13 doi: 10.6052/0459-1879-22-514
Xu Youjie, Xiang Zuping, Zhang Xiaotao, Yu Mengnan, Yu Xingying. Pressure transient model of multi-stage fractured horizontal well with induced fracture for heterogeneous stimulated reservoir volume. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 1-13 doi: 10.6052/0459-1879-22-514
Citation: Xu Youjie, Xiang Zuping, Zhang Xiaotao, Yu Mengnan, Yu Xingying. Pressure transient model of multi-stage fractured horizontal well with induced fracture for heterogeneous stimulated reservoir volume. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 1-13 doi: 10.6052/0459-1879-22-514

考虑诱导缝多段压裂水平井非均质改造压力动态模型研究

doi: 10.6052/0459-1879-22-514
基金项目: 中国石化海相油气藏开发重点实验室开放基金(33550000-22-ZC0613-0285)和中国石油股份公司课题(2021DJ2105)资助项目
详细信息
    通讯作者:

    徐有杰, 讲师, 主要研究方向为试井分析、非常规气藏渗流理论等. E-mail: xuyoujie920309@163.com

    向祖平, 教授, 主要研究方向为油气藏数值模拟、渗流理论等. E-mail: 33595639@qq.com

  • 中图分类号: TE312

PRESSURE TRANSIENT MODEL OF MULTI-STAGE FRACTURED HORIZONTAL WELL WITH INDUCED FRACTURE FOR HETEROGENEOUS STIMULATED RESERVOIR VOLUME

  • 摘要: 为了准确模拟致密油藏水平井大规模压裂形成复杂裂缝网络系统和非均质储层井底压力变化, 建立考虑诱导缝矩形非均质储层多段压裂水平井不稳定渗流数学模型, 耦合裂缝模型与储层模型得到有限导流裂缝拉普拉斯空间井底压力解, 对两种非均质储层模型分别利用数值解、边界元和已有模型验证其准确性. 基于压力导数曲线特征进行流动阶段划分和参数敏感性分析, 得到以下结果: 和常规压裂水平井井底压力导数曲线相比较, 理想模式下, 考虑诱导缝影响时特有的流动阶段是综合线性流阶段、诱导缝向压裂裂缝 “补充”阶段、储层线性流动阶段和拟边界控制流阶段. 诱导缝条数的增加加剧了综合线性流阶段的持续时间, 降低了流体渗流阻力, 早期阶段压力曲线越低; 当诱导缝与压裂裂缝导流能力一定时, 裂缝导流能力越大, 线性流持续时间越长; 当所有压裂裂缝不在一个区域时, 沿井筒方向两端区域低渗透率弱化了低渗区域诱导缝流体向压裂裂缝“补充”阶段, 因此, 沿井筒方向两端区域渗透率越低, 早期阶段压力曲线越高; 当所有压裂裂缝在一个区域时, 渗透率变化只影响径向流阶段之后压力曲线形态, 外区渗透率越低, 早期径向流阶段之后压力曲线越高. 通过实例验证, 表明该模型和方法的实用性和准确性.

     

  • 图  1  微地震监测图[24]

    Figure  1.  Microseismic map[24]

    图  2  非均质储层考虑诱导缝多段压裂水平井物理模型示意图

    Figure  2.  Physical model of fractured horizontal well with induced fracture in heterogeneous reservoir

    图  3  裂缝离散单元示意图

    Figure  3.  Schematic diagram of fracture element

    图  4  非均质储层多段压裂水平井储层交界面和裂缝离散示意图

    Figure  4.  Reservoir interface and fracture dispersion of multi-stage fracturing horizontal well in heterogeneous reservoirs

    图  5  非均质储层考虑诱导缝多段压裂水平井井底压力响应曲线

    Figure  5.  Wellbore pressure response curve of fractured horizontal well with induced fracture in heterogeneous reservoir

    图  6  非均质储层多段压裂水平井物理模型

    Figure  6.  Saphir physical model of multi-stage fractured horizontal well in heterogeneous reservoir

    图  7  非均质储层多段压裂水平井井底压力验证

    Figure  7.  Verification of wellbore pressure of multi stage fractured horizontal wells in heterogeneous reservoir

    图  8  诱导缝条数对井底压力动态特征曲线的影响

    Figure  8.  Influence of induced fracture number on wellbore pressure curve

    图  9  压裂裂缝条数对井底压力动态特征曲线的影响

    Figure  9.  Influence of hydraulic fracture number on wellbore pressure curve

    图  10  不同改造区渗透对井底压力动态特征曲线的影响

    Figure  10.  Influence of different SRV region permeability on wellbore pressure curve

    图  11  非改造区渗透率对井底压力动态特征曲线的影响

    Figure  11.  Influence of uSRV region permeability on wellbore pressure curve

    图  12  缝间距对井底压力动态特征曲线的影响

    Figure  12.  Influence of fracture spacing on wellbore pressure curve

    图  13  导流能力对井底压力动态特征曲线的影响

    Figure  13.  Influence of fracture conductivity on wellbore pressure curve

    图  14  H井井底压力动态特征曲线阶段划分

    Figure  14.  Stage division of wellbore pressure dynamic characteristic curve of well H

    图  15  H井井底压力曲线拟合

    Figure  15.  Fitting of wellbore pressure of well H

    表  1  模拟验证基本参数

    Table  1.   Basic value of validation

    Parameters/unitValue
    reservoirs thickness/m10
    wellbore radius/m0.1
    total compressibility coefficient/MPa−10.001
    reservoirs temperature/°C60
    initial reservoir pressure/MPa50
    volume factor1.15
    oil viscosity/(mPa·s)1
    half-length of hydraulic fracture and induced fracture/m60/30
    conductivity of hydraulic fracture and induced fracture/(mD·m)22104/5526
    horizontal well length/m1560
    hydraulic fracture and induced fracture number3/60
    permeability of region 1, region 2 and region 3/mD0.18/0.36/0.18
    下载: 导出CSV

    表  2  流动阶段曲线特征及示意图

    Table  2.   Curve characteristics and schematic diagram of flow stage

    Flowing regimeRegime name and characteristicCharacteristic of derivative curveDiagram
    regime Ⅰbilinear flow regime: the combination of reservoir linear flow and fractures linear flow0.25-slope straight line
    regime Ⅱcomplex linear flow regime: it reflects the linear flow of fluid to the fracture and induced fracture, linear flows in the fracture and induced fractureless than 0.25-slope straight line
    regime Ⅲ"supplement" regime of induced fracture to hydraulic fractures: "cross-flowing" of
    induced fracture to fracture[30]
    dip
    regime Ⅳreservoir linear flow regime: linear flow combination of reservoir fluid to
    fractures and induced fractures
    0.25 ~ 0.5-slope straight line
    regime Ⅴpseudo-boundary control flow regime: due to fracture interference, a small "circular"
    non-flow boundary is formed at the intersection of the hydraulic fracture and
    the induced fracture
    straight line that slope is close to 1
    regime Ⅵelliptical flow regime: ellipse flows around the fracture 0.36-slope straight line
    regime Ⅶearly radial flow stage: radial flow around the fracture[31]0.5/M horizontal line
    regime Ⅷlate linear flow stage (Fig.6(a)) and combination of late linear flow and
    outer linear flow (Fig.6(b))
    0.5-slope straight line (Fig.6(a))
    regime Ⅸboundary control flow stageunit-slope straight line
    下载: 导出CSV

    表  3  H井拟合结果

    Table  3.   Matching results of well H

    ParametersValue
    well storage coefficient/(m3·MPa−1)29.52
    skin factor0
    half-length of hydraulic fractures/m82
    conductivity of hydraulic fractures/(mD·m)278
    half-length of induced fractures/m32
    conductivity of induced fractures/(mD·m)103
    number of heterogeneous region6
    reservoir width/m342
    width of each SRV region/m430, 426, 501, 513, 435, 486
    permeability of each SRV region/mD2.3, 1.5, 2.6, 2.7, 2.2, 2.3
    下载: 导出CSV
  • [1] 王军磊, 贾爱林, 位云生等. 基于多井模型的压裂参数-开发井距系统优化. 石油勘探与开发, 2019, 46(5): 981-992 (Wang Junlei, Jia Ailing, Wei Yunsheng, et al. Optimization workflow for stimulation-well spacing design in a multiwell pad. Petroleum Exploration and Development, 2019, 46(5): 981-992 (in Chinese) doi: 10.11698/PED.2019.05.18
    [2] Zhang LH, Shan BC, Zhao YL, et al. Review of micro seepage mechanisms in shale gas reservoirs. International Journal of Heat and Mass Transfer, 2019, 139: 144-179 doi: 10.1016/j.ijheatmasstransfer.2019.04.141
    [3] 付海峰, 黄刘科, 张丰收等. 射孔模式对水力压裂裂缝起裂与扩展的影响机制研究. 岩石力学与工程学报, 2021, 40(S2): 3163-3173 (Fu Haifeng, Huang Liuke, Zhang Fengshou, et al. Effect of perforation technologies on the initiation and propagation of hydraulic fracture. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3163-3173 (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0573
    [4] 范勇, 赵彦琳, 朱哲明等. 基于井筒-射孔模型的地层破裂压力及起裂角的理论研究. 中南大学学报(自然科学版), 2019, 50(3): 669-678 (Fan Yong, Zhao Yanlin, Zhu Zheming, et al. Theoretical study of break down pressures and fracture initiation angles based on model containing wellbore and perforations. Journal of Central South University (Science and Technology), 2019, 50(3): 669-678 (in Chinese)
    [5] Chen ZM, Liao XW, Zhao XL, et al. A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks. SPE Journal, 2016, 21(2): 538-549 doi: 10.2118/178913-PA
    [6] Zhao YL, Zhang LH, Luo JX, et al. Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir. Journal of Hydrology, 2014, 512: 447-456 doi: 10.1016/j.jhydrol.2014.03.026
    [7] Xu YJ, Li XP, Liu QG. Pressure performance of multi-stage fractured horizontal well with stimulated reservoir volume and irregular fractures distribution in shale gas reservoirs. Journal of Natural Gas Science and Engineering, 2020, 77: 1-17
    [8] Xu J, Guo C, Teng W, et al. Production performance analysis of tight oil/gas reservoirs considering stimulated reservoir volume using elliptical flow. Journal of Natural Gas Science and Engineering, 2015, 26: 827-839 doi: 10.1016/j.jngse.2015.06.057
    [9] Ozkan E, Brown M, Raghavan R, et al. Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs. SPE Reservoir Evaluation & Engineering, 2011, 14(2): 248-259
    [10] Cinco-Ley H, Meng HZ. Pressure transient analysis of wells with finite conductivity vertical fractures in double porosity reservoirs// SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1988
    [11] Luo WJ, Tang CF, Zhou Y. A new fracture-unit model and its application to a z-fold fracture. SPE Journal, 2019, 24(1): 319-333 doi: 10.2118/194024-PA
    [12] Jia P, Cheng LS, Clarkson CR. Flow behavior analysis of two-phase flowback and early-time production from hydraulically-fractured shale gas wells using a hybrid numerical/analytical model. International Journal of Coal Geology, 2017, 182: 14-31
    [13] Zhang Q, Wang X, Wang D, et al. Pressure transient analysis for vertical fractured wells with fishbone fracture patterns. Journal of Natural Gas Science and Engineering, 2018, 52: 187-201 doi: 10.1016/j.jngse.2018.01.032
    [14] Zhou W, Banerjee R, Poe BD, et al. Semi-analytical production simulation of complex hydraulic fracture network. SPE Journal, 2013, 19(1): 6-18
    [15] Chen Z, Liao X, Sepehrnoori K, et al. A semianalytical model for pressure-transient analysis of fractured wells in unconventional plays with arbitrarily distributed discrete fractures. SPE Journal, 2018, 23(6): 2041-2059 doi: 10.2118/187290-PA
    [16] 陈志明, 陈昊枢, 廖新维等. 致密油藏压裂水平井缝网系统评价方法−以准噶尔盆地吉木萨尔地区为例. 石油与天然气地质, 2020, 41(6): 1288-1298 (Chen Zhiming, Chen Haoshu, Liao Xxinwei, et al. Evaluation of fracture networks along fractured horizontal wells in tight oil reservoirs: A case study of Jimusar oilfield in the Junggar Basin. Oil & Gas Geology, 2020, 41(6): 1288-1298 (in Chinese) doi: 10.11743/ogg20200617
    [17] Xu YJ, Liu QG, Li XP, et al. Pressure transient and blasingame production decline analysis of hydraulic fractured well with induced fractures in composite shale gas reservoirs. Journal of Natural Gas Science and Engineering, 2021, 94: 1-19
    [18] Liu H, Liao X, Tang X, et al. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks. Journal of Petroleum Science and Engineering, 2021, 196: 108042 doi: 10.1016/j.petrol.2020.108042
    [19] Li LK, Guo X, Zhou M, et al. Numerical modeling of fluid flow in tight oil reservoirs considering complex fracturing networks and Pre-Darcy flow. Journal of Petroleum Science and Engineering, 2021, 207: 109050 doi: 10.1016/j.petrol.2021.109050
    [20] 程林松, 杜旭林, 饶翔等. 两套节点格林元嵌入式离散裂缝模型数值模拟方法. 力学学报, 2022, 54(10): 2892-2903 (Cheng Linsong, Du Xulin, Rao Xiang, et al. A numerical simulation approach for embedded discrete fracture model coupled green element method based on two sets of nodes. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2892-2903 (in Chinese) doi: 10.6052/0459-1879-22-250
    [21] 杜旭林, 程林松, 牛烺昱等. 基于XFEM-MBEM 的嵌入式离散裂缝模型流固耦合数值模拟方法. 力学学报, 2021, 53(12): 3413-3424 (Du Xulin, Cheng Linsong, NiuLangyu, et al. Numericalsimulation for coupling flow and geomechanics in embedded discrete fracture model based on xfemmbem. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3413-3424 (in Chinese)
    [22] Zhao YL, Zhang LH, Shan BC. Mathematical model of fractured horizontal well in shale gas reservoir with rectangular stimulated reservoir volume. Journal of Natural Gas Science and Engineering, 2018, 59: 67-79 doi: 10.1016/j.jngse.2018.08.018
    [23] 王家航, 王晓冬, 董文秀等. 非均质油藏多段压裂水平井不稳态压力分析半解析方法. 东北石油大学学报, 2017, 41(5): 90-99 (Wang Jiahang, Wang Xiaodong, Dong Wenxiu, et al. Semi-analytical approach to model pressure transients of multiple-fractured horizontal wells in heterogeneous reservoirs. Journal of Northeast Petroleum University, 2017, 41(5): 90-99 (in Chinese) doi: 10.3969/j.issn.2095-4107.2017.05.010
    [24] 陈志明, 王佳楠, 廖新维等. 海陆过渡相页岩气藏不稳定渗流数学模型. 力学学报, 2021, 53(8): 2257-2266 (Chen Zhiming, Wang Jianan, Liao Xinwei, et al. An unstable porous flow model of marine-continental transitional shale gas reservoir. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2257-2266 (in Chinese) doi: 10.6052/0459-1879-21-271
    [25] 刘曰武, 高大鹏, 李奇等. 页岩气开采中的若干力学前沿问题. 力学进展, 2019, 49(1): 1-236 (Liu Yuewu, Gao Dapeng, Li Qi, et al. Mechanical frontiers in shale-gas development. Advances in Mechanics, 2019, 49(1): 1-236 (in Chinese) doi: 10.6052/1000-0992-17-020
    [26] Medeiros F, Ozkan E, Kazemi H. A semianalytical pressure-transient model for horizontal and multilateral wells in composite, layered, and compartmentalized reservoirs//SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2006
    [27] Deng Q, Nie RS, Wang S, et al. Pressure transient analysis of a fractured well in multi-region linear composite reservoirs. Journal of Petroleum Science and Engineering, 2022, 208: 109262 doi: 10.1016/j.petrol.2021.109262
    [28] Ozkan E, Raghavan R. New solutions for well-test-analysis problems: part 1-analytical considerations (includes associated papers 28666 and 29213 ). SPE Formation Evaluation, 1991, 6(3): 359-368 doi: 10.2118/18615-PA
    [29] 王晓冬, 罗万静, 侯晓春等. 矩形油藏多段压裂水平井不稳态压力分析. 石油勘探与开发, 2014, 41(1): 74-94 (Wang Xiaodong, Luo Wanjing, Hou Xiaochun, et al. Transient pressure analysis of multiple-fractured horizontal wells in boxed reservoirs. Petroleum Exploration and Development, 2014, 41(1): 74-94 (in Chinese) doi: 10.11698/PED.2014.01.09
    [30] Chen ZM, Liao XW, Zhao XL, et al. Influence of magnitude and permeability of fracture networks on behaviors of vertical shale gas wells by a free-simulator approach. Journal of Petroleum Science and Engineering, 2016, 147: 261-272 doi: 10.1016/j.petrol.2016.06.006
    [31] Chen CC, Rajagopal RA. Multiply-fractured horizontal well in a rectangular drainage region. SPE Journal, 1997, 2(4): 455-465
    [32] Xu YJ, Li XP, Liu QG, et al. A semi-analytical solution of finite-conductivity multi-wing fractured well in naturally fractured reservoirs by boundary element method. Journal of Petroleum Science and Engineering, 2021, 203: 108584 doi: 10.1016/j.petrol.2021.108584
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  36
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-22
  • 录用日期:  2023-02-23
  • 网络出版日期:  2023-02-24

目录

    /

    返回文章
    返回