STUDY ON HYPERSONIC BOUNDARY LAYER LIQUID FILM EVOLUTION AND COOLING MECHANISM
-
摘要: 高超声速液膜冷却技术是通过一系列狭缝或孔洞压出冷却工质, 在飞行器表面边界层形成一层低温冷却膜, 阻止高超声速气流对飞行器的气动加热. 其作为一种主动冷却方式在高超声速飞行器表面热防护有着巨大的应用潜力. 文章采用数值方法, 结合VOF模型, 研究25 km飞行高度和Ma=5气流条件下的液膜铺展情况, 并通过不同冷却工质的入射速度、角度、表面张力和黏性系数条件, 讨论了液膜在平板上的演化过程和冷却机理. 结果表明, 在气流作用下, 液膜向壁面下游发展, 液膜的存在导致边界层分离, 连续液膜会在一定位置断裂为液块, 然后进一步破碎为液滴. 入射条件和液体性质的改变, 会影响液膜沿流向的发展, 具体表现在连续液膜断裂点的位置和连续液膜的厚度. 在所设定的计算域内, 壁面热流降低了80% ~ 95%, 液膜对壁面的冷却效率随着液膜形态的变化而变化.Abstract: Hypersonic liquid film cooling technology is to press out the cooling medium through a series of slits or holes, creat a low-temperature cooling film in the boundary layer of the surface of the aircraft to prevent the aerodynamic heating of the aircraft by hypersonic airflow. As an active cooling method, it has great application potential in surface thermal protection of hypersonic vehicle. In this paper, numerical methods and VOF model are used to study the spreading of liquid film at 25 km flight altitude and Ma=5 airflow. The evolution process and cooling mechanism of liquid film on a flat plate are discussed through the incident velocity, Angle, surface tension and viscosity coefficient of different cooling medium. The results show that under the action of air flow, the liquid film develops downstream to the wall surface, the existence of the liquid film leads to the boundary layer separation, and the continuous liquid film will be broken into liquid blocks at a certain position, and then further broken into droplets. The change of incident conditions and liquid properties will affect the development of the liquid film along the flow direction, which is manifested in the position of the fracture point and the thickness of the continuous liquid film. Within the computational domain set in this paper, the wall heat flow is reduced by 80% ~ 95%, and the cooling efficiency of the liquid film on the wall varies with the the change of the liquid film morphology.
-
Key words:
- hypersonic /
- liquid film cooling /
- liquid film evolution /
- wall heat flow /
- VOF
-
图 13 (a) 多个典型工况下的壁面热流分布, (b) 工况 3 与无液膜平板的壁面热流分布和(c) 工况 3 与无液膜平板在三个横截面下的近壁温度对比
Figure 13. (a) Wall heat flow distribution under multiple typical working conditions, (b) wall heat flow distribution between working condition 3 and the plate with no liquid film and (c) comparison of the near-wall temperature at three cross-sections for case 3 and the flat plate withoutliquid film
图 15 (a) 无液膜平板的温度云图, (b) 工况 3 液膜破碎前的温度云图, (c) 工况 3 液膜破碎后的温度云图和(d) 工况 1 液膜破碎后的温度云图
Figure 15. (a) Temperature cloud diagram of a plate without liquid film, (b) temperature cloud map before liquid film breakage in working condition 3, (c) temperature cloud map after liquid film breakage in working condition 3 and (d) temperature cloud diagram after liquid film breakage in workingcondition 1
表 1 工况参数
Table 1. Operating parameters
Incident velocity/(m·s−1) Incident angle/(°) Surface tension Kinetic viscosity/(Pa·s) 1 0.2 14.0 0.072 1.0 × 10−3 2 0.4 14.0 0.072 1.0 × 10−3 3 0.6 14.0 0.072 1.0 × 10−3 4 0.8 14.0 0.072 1.0 × 10−3 5 1.0 14.0 0.072 1.0 × 10−3 6 0.6 11.4 0.072 1.0 × 10−3 7 0.6 18.4 0.072 1.0 × 10−3 8 0.6 26.6 0.072 1.0 × 10−3 9 0.6 90.0 0.072 1.0 × 10−3 10 0.6 14.0 0.048 1.0 × 10−3 11 0.6 14.0 0.096 1.0 × 10−3 12 0.6 14.0 0.072 7.50 × 10−4 13 0.6 14.0 0.072 1.25 × 10−3 表 2 典型工况下壁面的热量传递
Table 2. Heat transfer on the wall under typical working conditions
Condition plate gas film colling condition 3 condition 5 condition 7 condition 9 Heat transfer/W 1821 509 316 248 548 93 表 3 各工况对壁面的热量传递
Table 3. Heat transfer to the wall under different working conditions
Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 Heat transfer/W 5243 5036 5032 4979 4941 5043 4960 4935 4638 5085 5016 5130 4935 -
[1] 梁伟, 金华, 孟松鹤等. 高超声速飞行器新型热防护机制研究进展. 宇航学报, 2021, 42(4): 409-424Liang Wei, Jin Hua, Meng Songhe, et al. Research progress on new thermal protection mechanisms for hypersonic vehicles. Journal of Astronautics, 201, 42(4): 409-424 (in Chinese)) [2] Shine SR, Nidhi SS. Review on film cooling of liquid rocket engines. Propulsion and Power Research, 2018, 7(1): 1-18 doi: 10.1016/j.jppr.2018.01.004 [3] 沈斌贤, 曾磊, 刘骁等. 高超声速飞行器主动质量引射热防护技术研究进展. 空气动力学学报, 2011, 40: 1-13 (Shen Binxian, Zeng Lei, Liu Xiao, et al. Research progress of thermal protection technology by activemass injection for hypersonic vehicles. Journal of Aerodynamics, 2011, 40: 1-13 (in Chinese) doi: 10.3969/j.issn.0258-1825.2011.01.001 [4] Kim M, Shin DH, Lee BJ, et al. Flow characterization of microscale effusion and transpiration air cooling on single blade. Case Studies in Thermal Engineering, 2022, 31: 101863 [5] Ji C, Liu B, Li S, et al. Parametric investigation on drag reduction and thermal protection characteristics of the porous opposing jet in the hypersonic flow. Aerospace Science and Technology, 2021, 116: 106867 [6] Zhu YH, Wei P, Xu RN, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953 doi: 10.1016/j.cja.2018.06.011 [7] Kelly HN, Blosser ML. Active cooling from the sixties to NASP//NASA Conference Publication. NASA, 1992: 189-189 [8] 邓帆, 谢峰, 黄伟等. 逆向喷流技术在高超声速飞行器上的应用. 空气动力学学报, 2017, 35(4): 485-495 (Deng Fan, Xie Feng, Huang Wei, et al. Application of counterflowing jet technology in hypersonic vehicle. Journal of Aerodynamics, 2017, 35(4): 485-495 (in Chinese) doi: 10.7638/kqdlxxb-2017.0057 [9] Kacynski K, Hoffman J. The prediction of nozzle performance and heat transfer in hydrogen/oxygen rocket engines with transpiration cooling, film cooling, and high area ratios//30th Joint Propulsion Conference and Exhibit, 1994: 2757 [10] Cherdantsev AV, Hann DB, Azzopardi BJ. Study of gas-sheared liquid film in horizontal rectangular duct using high-speed LIF technique: Three-dimensional wavy structure and its relation to liquid entrainment. International Journal of Multiphase Flow, 2014, 67: 52-64 doi: 10.1016/j.ijmultiphaseflow.2014.08.003 [11] Troitskaya Y, Kandaurov A, Ermakova O, et al. The small-scale instability of the air–water interface responsible for the bag-breakup fragmentation. Journal of Physical Oceanography, 2022, 52(3): 493-517 doi: 10.1175/JPO-D-21-0192.1 [12] Cherdantsev AV, Sinha A, Hann DB. Studying the impacts of droplets depositing from the gas core onto a gas-sheared liquid film with stereoscopic BBLIF technique. International Journal of Multiphase Flow, 2022, 150: 104033 [13] Dietze GF. Effect of wall corrugations on scalar transfer to a wavy falling liquid film. Journal of Fluid Mechanics, 2019, 859: 1098-1128 doi: 10.1017/jfm.2018.851 [14] Ji H, Sadeghpour A, Ju YS, et al. Modelling film flows down a fibre influenced by nozzle geometry. Journal of Fluid Mechanics, 2020, 901(R6): 1-11 [15] Shinan C, Weidong Y, Mengjie S, et al. Investigation on wavy characteristics of shear-driven water film using the planar laser induced fluorescence method. International Journal of Multiphase Flow, 2019, 118: 242-253 doi: 10.1016/j.ijmultiphaseflow.2019.04.016 [16] Zhao H, Dai H, Zhu D, et al. Experimental research on the fluctuation characteristics of water film driven by wind. Coatings, 2022, 12(8): 1-13 [17] Wang ZR, Zhang XB, Wen SZ, et al. Experimental investigation of the effect of gravity on heat transfer and instability in parallel mini-channel heat exchanger. Microgravity Science and Technology, 2018, 30(6): 831-838 doi: 10.1007/s12217-018-9615-8 [18] Kuznetsov VV, Fominykh EY. Evaporation of a liquid film in a microchannel under the action of a co-current dry gas flow. Microgravity Science and Technology, 2020, 32(2): 245-258 doi: 10.1007/s12217-019-09765-z [19] Sriram R, Jagadeesh G. Film cooling at hypersonic Mach numbers using forward facing array of micro-jets. International Journal of Heat and Mass Transfer, 2009, 52(15-16): 3654-3664 doi: 10.1016/j.ijheatmasstransfer.2009.02.035 [20] 许浩楠, 李雪英, 任静. 激波对超音速气膜冷却流动换热特性影响//第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会暨2021航空发动机技术发展高层论坛, 2022: 2235-2244Xu Haonan, Li Xueying, Ren Jing. Effects of shock waves on heat transfer characteristics of supersonic film cooling flow//The sixth Joint Conference on Aerospace Power and the 42nd Technical Exchange Conference of China Aerospace Third Professional Information Network and 2021 High-level Forum on Aero-engine Technology Development, 2022: 2235-2244 (in Chinese)) [21] Shen BX, Liu WQ. Insulating and absorbing heat of transpiration in a combinational opposing jet and platelet transpiration blunt body for hypersonic vehicle. International Journal of Heat and Mass Transfer, 2019, 138: 314-325 doi: 10.1016/j.ijheatmasstransfer.2019.04.057 [22] Boden RH. Heat transfer in rocket motors and the application of film and sweat cooling. Transactions of the American Society of Mechanical Engineers, 1951, 73(4): 385-390 [23] Kirchberger C, Schlieben G, Hupfer A, et al. Investigation on Film cooling in a Kerosene/GOX combustion chamber//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009: 5406 [24] Shine SR, Kumar SS, Suresh BN. A new generalised model for liquid film cooling in rocket combustion chambers. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5065-5075 doi: 10.1016/j.ijheatmasstransfer.2012.05.006 [25] Jang D, Kwak Y, Kwon S. Design and validation of a liquid film-cooled hydrogen peroxide/kerosene bipropellant thruster. Journal of Propulsion and Power, 2015, 31(2): 761-765 doi: 10.2514/1.B35434 [26] Sako N, Noda K, Hayashi J, et al. Quenching of a heated wall with spatial temperature gradient using a liquid film through oblique jet impingement. International Journal of Heat and Mass Transfer, 2022, 192: 122925 [27] Inoue T, Inoue C, Fujii G, et al. Evaporation of three-dimensional wavy liquid film entrained by turbulent gas flow. AIAA Journal, 2022, 60(6): 3805-3812 doi: 10.2514/1.J061381 [28] Parker RR, Klausner JF, Mei R. Supersonic two-phase impinging jet heat transfer. Journal of Heat Transfer, 2013, 135(2): 1-9 [29] Yuan C, Li J, Jiang Z, et al. Experimental investigation of liquid film cooling in hypersonic flow. Physics of Fluids, 2019, 31(4): 1-10 [30] Xiao F, Dianat M, McGuirk JJ. Large eddy simulation of liquid-jet primary breakup in air crossflow. AIAA Journal, 2013, 51(12): 2878-2893 doi: 10.2514/1.J052509 [31] 周曜智, 李春, 李晨阳等. 超声速横向气流中液体射流的轨迹预测与连续液柱模型. 物理学报, 2020, 69(23): 219-232 (Zhou Yaozhi, Li Chun, Li Chenyang, et al. Prediction of liquid jet trajectory in supersonic crossflow continuous liquid column model. Acta Physica Sinica, 2020, 69(23): 219-232 (in Chinese) doi: 10.7498/aps.69.20200903 [32] Kamp J, Villwock J, Kraume M. Drop coalescence in technical liquid/liquid applications: A review on experimental techniques and modeling approaches. Reviews in Chemical Engineering, 2017, 33(1): 1-47 doi: 10.1515/revce-2015-0071 [33] Anderson JD. Hypersonic and high temperature gas dynamics//AIAA, 2000 [34] Garbey M, Picard C. A code-independent technique for computational verification of fluid mechanics and heat transfer problems. Acta Mechanica Sinica, 2008, 24(4): 387-397 [35] Zandian A, Sirignano WA, Hussain F. Planar liquid jet: Early deformation and atomization cascades. Physics of Fluids, 2017, 29(6): 1-19 [36] Poblador-Ibanez J, Sirignano WA. A volume-of-fluid method for variable-density, two-phase flows at supercritical pressure. Physics of Fluids, 2022, 34(5): 1-39 [37] 何昌升, 刘云鹏, 韩宗英等. 平板式预膜喷嘴初次雾化特性试验. 航空动力学报, 2020, 35(3): 482-495He Changsheng, Liu Yunpeng, Han Zongying, et al. Experiment on primary atomization characteristics of planar prefilming nozzle. Journal of Aerospace Power, 20, 35(3): 482-495 (in Chinese)) [38] 陆小革, 易仕和, 牛海波等. 不同入射激波条件下激波与湍流边界层干扰的实验研究. 中国科学: 物理学 力学 天学, 2020, 50(10): 61-72 (Lu Xiaoge, Yi Shihe, Niu Haibo, et al. Experimental study on shock and turbulent boundary layer interactions under different incident shock waves. Science in China Physics,Mechanics and Astronomy, 2020, 50(10): 61-72 (in Chinese) [39] Poblador-Ibanez J, Sirignano WA. Liquid-jet instability at high pressures with real-fluid interface thermodynamics. Physics of Fluids, 2021, 33(8): 083308 [40] Déjean B, Berthoumieu P, Gajan P. Experimental study on the influence of liquid and air boundary conditions on a planar air-blasted liquid sheet. Part I: Liquid and air thicknesses. International Journal of Multiphase Flow, 2016, 79: 202-213 doi: 10.1016/j.ijmultiphaseflow.2015.09.002 -