EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2微气泡溶解动力学及提高采收率机理研究

贾昊卫 于海洋 谢非矾 袁舟 徐克 汪洋

贾昊卫, 于海洋, 谢非矾, 袁舟, 徐克, 汪洋. CO2微气泡溶解动力学及提高采收率机理研究. 力学学报, 2023, 55(2): 1-10 doi: 10.6052/0459-1879-22-507
引用本文: 贾昊卫, 于海洋, 谢非矾, 袁舟, 徐克, 汪洋. CO2微气泡溶解动力学及提高采收率机理研究. 力学学报, 2023, 55(2): 1-10 doi: 10.6052/0459-1879-22-507
Jia Haowei, Yu Haiyang, Xie Feifan, Yuan Zhou, Xu Ke, Wang Yang. Research on CO2 microbubble dissolution kinetics and enhanced oil recovery mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-10 doi: 10.6052/0459-1879-22-507
Citation: Jia Haowei, Yu Haiyang, Xie Feifan, Yuan Zhou, Xu Ke, Wang Yang. Research on CO2 microbubble dissolution kinetics and enhanced oil recovery mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-10 doi: 10.6052/0459-1879-22-507

CO2微气泡溶解动力学及提高采收率机理研究

doi: 10.6052/0459-1879-22-507
基金项目: 国家自然科学基金(52074317, 51874317)和中国石油大学(北京)科研基金(2462020YXZZ028)资助项目
详细信息
    作者简介:

    通讯作者: 于海洋, 教授, 主要研究方向为油气田开发渗流理论与提高采收率. E-mail: haiyangyu.cup@139.com

    通讯作者:

    汪洋, 副教授, 主要研究方向为油气井动态监测与解释、裂缝表征及模拟. E-mail: petroyang@163.com

  • 中图分类号: TE348

RESEARCH ON CO2 MICROBUBBLE DISSOLUTION KINETICS AND ENHANCED OIL RECOVERY MECHANISMS

  • 摘要: CO2微气泡是一种具有潜力的提高采收率与碳埋存方法, 本文在自主设计的CO2微气泡发泡装置的基础上, 表征了高温高压条件下微气泡形态, 进一步研究了微气泡的溶解特征, 研究结果表明: 10 MPa下制备出的微气泡直径10 ~ 70 μm, 平均直径34.43 μm; 15 MPa下制备的微气泡直径更小, 平均直径25.03 μm; 地层水高矿化度条件下, 平均气泡直径277.17 μm, 且气泡稳定性降低. 微气泡的溶解实验结果表明CO2微气泡的溶解速率较高, 但是未溶解的CO2仍以气泡的形式在地层中运移, 微气泡注入地层后将形成“碳化水 + 微气泡”的运移模式. 采用可视化微流控平台, 首次研究了高温高压条件下无化学剂辅助CO2微气泡的提高采收率机理: ①提高微观洗油效率; ②通过体积膨胀、溶解携带作用将油滴带出盲端, 采出盲端中的剩余油; ③打破油滴的毛管压力平衡状态, 采出柱状残余油; ④在流动中产生“贾敏效应”, 封堵大孔隙、提高波及效率. 本文研究可为CO2微气泡提高油藏采收率与碳封存提供指导.

     

  • 图  1  微气泡发泡装置

    Figure  1.  Microbubbles generator

    图  2  微流控实验装置示意图

    Figure  2.  The schematic diagram of microfluidic experiment

    图  3  微流控芯片设计及实物图

    Figure  3.  The schematic diagram and a sample of microfluidic chip

    图  4  微气泡粒径分析示例: (a) 原始图像; (b) 灰度图像; (c) 二值化图像; (d) 微气泡轮廓

    Figure  4.  The example of microbubble size analysis: (a) Original image; (b) Grayscale image; (c) Binary image;(d) Outline of bubbles

    图  5  微气泡形态对比: (a) 无化学剂的微气泡; (b) 化学剂辅助的微气泡[19], 室温常压条件

    Figure  5.  Comparison of microbubble morphology: (a) non-chemical microbubbles; (b) microbubbles assisted by chemicals[19], ambient conditions

    图  6  微气泡在孔道中的变形

    Figure  6.  Deformation of microbubbles in pore channel

    图  7  微气泡粒径分析

    Figure  7.  The microbubble size analysis

    图  8  高地层水矿化度下的微气泡直径分布

    Figure  8.  Microbubbles size distribution under high salinity condition

    图  9  静态条件下微气泡直径随时间的变化(CO2浓度为0)

    Figure  9.  Microbubbles diameter variation during static dissolution (CO2 concentration is 0)

    图  10  静态条件下微气泡直径随时间的变化(近饱和)

    Figure  10.  Microbubbles diameter variation during static dissolution (near saturated)

    图  11  动态条件下微气泡直径随时间的变化

    Figure  11.  Microbubbles diameter variation during dynamic dissolution

    图  12  微气泡对壁面残余油滴的动用

    Figure  12.  Displacement of oil droplet on wall surface by microbubbles

    图  13  微气泡对盲端孔隙中残余油的动用

    Figure  13.  Microbubbles enter the pores with dead ends

    图  14  微气泡对油滴的溶解携带

    Figure  14.  Dissolution extraction of microbubbles in oil droplet

    图  15  微气泡对柱状残余油的动用

    Figure  15.  Displacement of columnar residual oil by microbubbles

    图  16  驱油过程中的微流控芯片

    Figure  16.  Microfluidic chip during oil displacement

    表  1  地层水组分及性质

    Table  1.   Composition and properties of formation water

    Brine
    type
    Na+/
    (mg·L−1)
    K+/
    (mg·L−1)
    Ca2+/
    (mg·L−1)
    Cl/
    (mg·L−1)
    Salinity/
    (mg·L−1)
    low salinity138815376836547086
    high salinity1180157390271921430996
    下载: 导出CSV

    表  2  不同压力下CO2的密度与界面张力

    Table  2.   Properties of CO2 under different pressures

    Pressure/
    MPa
    Temperature/
    °C
    CO2 density/
    (kg·m−3)
    Interfacial tension (CO2 and
    water)/(mN·m−1)
    1040628.6125.8
    1540787.8119.2
    下载: 导出CSV
  • [1] Liu Z, Liang Y, Wang Q, et al. Status and progress of worldwide EOR field applications. Journal of Petroleum Science and Engineering, 2020, 193: 107449 doi: 10.1016/j.petrol.2020.107449
    [2] 胡永乐, 郝明强, 陈国利等. 中国CO2驱油与埋存技术及实践. 石油勘探与开发, 2019, 46(4): 716-727

    Hu Yongle, Hao Mingqiang, Chen Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China. Petroleum Exploration and Development. 2019, 46(4): 716-727 (in Chinese)
    [3] 齐松超, 于海洋, 杨海烽等. 致密砂岩逆向渗吸作用距离实验研究. 力学学报, 2021, 53(9): 2603-2611 (Qi Songchao, Yu Haiyang, Yang Haifeng, et al. Experimental research on quantification of countercurrent imbibition distance for tight sandstone. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2603-2611 (in Chinese) doi: 10.6052/0459-1879-21-298
    [4] Li H, Yang Z, Li R, et al. Mechanism of CO2 enhanced oil recovery in shale reservoirs. Petroleum Science, 2021, 18(6): 1788-1796 doi: 10.1016/j.petsci.2021.09.040
    [5] Xu T, Tian H, Zhu H, et al. China actively promotes CO2 capture, utilization and storage research to achieve carbon peak and carbon neutrality. Advances in Geo-Energy Research, 2022, 6(1): 1-3 doi: 10.46690/ager.2022.01.01
    [6] Yu H, Fu W, Zhang Y, et al. Experimental study on EOR performance of CO2-based flooding methods on tight oil. Fuel, 2021, 290: 119988 doi: 10.1016/j.fuel.2020.119988
    [7] Yu H, Xu H, Fu W, et al. Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel, 2021, 285: 118977 doi: 10.1016/j.fuel.2020.118977
    [8] 陈浩, 刘希良, 贾宁洪等. CO2近混相驱的关键科学问题与展望. 石油科学通报, 2020, 5(3): 392-401 (Chen Hao, Liu Xiliang, Jia Ninghong, et, al. Prospects and key scientific issues of CO2 near-miscible flooding. Petroleum Science Bulletin, 2020, 5(3): 392-401 (in Chinese) doi: 10.3969/j.issn.2096-1693.2020.03.033
    [9] 魏鹳举, 胡冉, 廖震等. 湿润性对孔隙介质两相渗流驱替效率的影响. 力学学报, 2021, 53(4): 1008-1017 (Wei Guanju, Hu Ran, Liao Zhen, et al. Effects of wettability on displacement efficiency of two-phase flow in porous media. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1008-1017 (in Chinese) doi: 10.6052/0459-1879-20-403
    [10] Tang M, Wang C, Deng X, et al. Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water. Advances in Geo-Energy Research, 2022, 6(2): 95-103 doi: 10.46690/ager.2022.02.02
    [11] Chen Z, Su Y, Li L, et al. Characteristics and mechanisms of supercritical CO2 flooding under different factors in low-permeability reservoirs. Petroleum Science, 2022, 19(3): 1174-1184 doi: 10.1016/j.petsci.2022.01.016
    [12] 李原, 狄勤丰, 王文昌等. 基于核磁共振技术的非均质岩心中泡沫动态稳定性评价方法及应用. 力学学报, 2021, 53(8): 2205-2213 (Li Yuan, Di Qinfeng, Wang Wenchang, et al. Evaluation method and application of foam dynamic stability in heterogeneous cores based on nuclear magnetic resonance technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2205-2213 (in Chinese) doi: 10.6052/0459-1879-21-278
    [13] Afifi H R, Mohammadi S, Derazi A M, et al. A comprehensive review on critical affecting parameters on foam stability and recent advancements for foam-based EOR scenario. Journal of Molecular Liquids, 2021, in press, doi: 10.1016/j.molliq.2021.116808
    [14] Yoon RH, Yordan JL. Zeta-potential measurements on microbubbles generated using various surfactants. Journal of Colloid and Interface Science, 1986, 113(2): 430-438 doi: 10.1016/0021-9797(86)90178-5
    [15] Takahashi M. ζ potential of microbubbles in aqueous solutions: electrical properties of the gas−water interface. The Journal of Physical Chemistry B, 2005, 109(46): 21858-21864 doi: 10.1021/jp0445270
    [16] Hasegawa H, Nagasaka Y, Kataoka H. Electrical potential of microbubble generated by shear flow in pipe with slits. Fluid dynamics research, 2008, 40(7-8): 554 doi: 10.1016/j.fluiddyn.2007.12.007
    [17] 谢冰琪, 周才金, 黄小婷等. 微分散法连续制备微气泡的研究进展. 过程工程学报, 2021, 21(8): 865-876 (Xie Bingqi, Zhou Caijin, Huang Xiaoting, et al. Research progress of continuous generation of microbubbles by microdispersion. The Chinese Journal of Process Engineering, 2021, 21(8): 865-876 (in Chinese) doi: 10.12034/j.issn.1009-606X.220341
    [18] Parmar R, Majumder SK. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report. Chemical Engineering and Processing: Process Intensification, 2013, 64: 79-97 doi: 10.1016/j.cep.2012.12.002
    [19] Le NNH, Sugai Y, Vo-Thanh H, et al. Experimental investigation on plugging performance of CO2 microbubbles in porous media. Journal of Petroleum Science and Engineering, 2022, 211: 110187 doi: 10.1016/j.petrol.2022.110187
    [20] Shi S, Wang Y, Li Z, et al. Experimental study on stability and improving sweep efficiency with microfoam in heterogeneous porous media. Journal of Dispersion Science and Technology, 2016, 37(8): 1152-1159 doi: 10.1080/01932691.2015.1083869
    [21] Liu N, Chen X, Ju B, et al. Microbubbles generation by an orifice spraying method in a water-gas dispersion flooding system for enhanced oil recovery. Journal of Petroleum Science and Engineering, 2021, 198: 108196 doi: 10.1016/j.petrol.2020.108196
    [22] 魏婕, 蒋毓婷, 李军等. 微纳米气泡特征及其在环境治理中的应用. 环境工程, 2018, 36(10): 75-79 (Wei Jie, Jiang Yuting, Li Jun, et al. Characteristics of micro-nano bubble and its application in environmental treatment. Environmental Engineering, 2018, 36(10): 75-79 (in Chinese) doi: 10.13205/j.hjgc.201810015
    [23] Xie BQ, Zhou CJ, Sang L, et al. Preparation and characterization of microbubbles with a porous ceramic membrane. Chemical Engineering and Processing-Process Intensification, 2021, 159: 108213 doi: 10.1016/j.cep.2020.108213
    [24] Xue Z, Yamada T, Matsuoka T, et al. Carbon dioxide microbubble injection–Enhanced dissolution in geological sequestration. Energy Procedia, 2011, 4: 4307-4313 doi: 10.1016/j.egypro.2011.02.381
    [25] Xue Z, Nishio S, Hagiwara N, et al. Microbubble carbon dioxide injection for enhanced dissolution in geological sequestration and improved oil recovery. Energy Procedia, 2014, 63: 7939-7946 doi: 10.1016/j.egypro.2014.11.828
    [26] Jiang L, Xue Z, Park H. Enhancement of CO2 dissolution and sweep efficiency in saline aquifer by micro bubble CO2 injection. International Journal of Heat and Mass Transfer, 2019, 138: 1211-1221 doi: 10.1016/j.ijheatmasstransfer.2019.04.139
    [27] Zhai H, Xue Z, Park H, et al. Migration characteristics of supercritical CO2 microbubble flow in the Berea sandstone revealed by voxel-based X-ray computed tomography imaging analysis. Journal of Natural Gas Science and Engineering, 2020, 77: 103233 doi: 10.1016/j.jngse.2020.103233
    [28] Patmonoaji A, Zhang Y, Xue Z, et al. Experimental and numerical simulation of supercritical CO2 microbubble injection into a brine-saturated porous medium. International Journal of Greenhouse Gas Control, 2019, 91: 102830 doi: 10.1016/j.ijggc.2019.102830
    [29] Zhao S, Ding YD, Liao Q, et al. Experimental and theoretical study on dissolution of a single mixed gas bubble in a microalgae suspension. RSC Advances, 2015, 5(41): 32615-32625 doi: 10.1039/C5RA03905C
    [30] Fanaie VR, Khiadani M. Effect of salinity on air dissolution, size distribution of microbubbles, and hydrodynamics of a dissolved air flotation (DAF) system. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 591: 124547 doi: 10.1016/j.colsurfa.2020.124547
    [31] Duncan PB, Needham D. Test of the Epstein− Plesset Model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. Langmuir, 2004, 20(7): 2567-2578 doi: 10.1021/la034930i
    [32] Trushin AM, Dmitriev EA, Akimov VV. Mechanics of the formation of microbubbles in gas dispersion through the pores of microfiltration membranes. Theoretical Foundations of Chemical Engineering, 2011, 45(1): 26-32 doi: 10.1134/S0040579510061053
    [33] Ma K, Liontas R, Conn CA, et al. Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter, 2012, 8(41): 10669-10675 doi: 10.1039/c2sm25833a
    [34] Frenkel M, Chirico RD, Diky V, et al. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. Journal of chemical information and modeling, 2005, 45(4): 816-838 doi: 10.1021/ci050067b
    [35] Omrani S, Ghasemi M, Mahmoodpour S, et al. Insights from molecular dynamics on CO2 diffusion coefficient in saline water over a wide range of temperatures, pressures, and salinity: CO2 geological storage implications. Journal of Molecular Liquids, 2022, 345: 117868 doi: 10.1016/j.molliq.2021.117868
    [36] Alizadeh A, Khamehchi E. Mathematical modeling of the colloidal gas aphron motion through porous medium, including colloidal bubble generation and destruction. Colloid and Polymer Science, 2016, 294(6): 1075-1085 doi: 10.1007/s00396-016-3866-y
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  38
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 录用日期:  2022-11-28
  • 网络出版日期:  2022-11-29

目录

    /

    返回文章
    返回