EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含冷却孔镍基合金次级取向效应的应变梯度晶体塑性有限元研究

熊宇凯 赵建锋 饶威 黄志勇 康国政 张旭

熊宇凯, 赵建锋, 饶威, 黄志勇, 康国政, 张旭. 含冷却孔镍基合金次级取向效应的应变梯度晶体塑性有限元研究. 力学学报, 2023, 55(1): 120-133 doi: 10.6052/0459-1879-22-497
引用本文: 熊宇凯, 赵建锋, 饶威, 黄志勇, 康国政, 张旭. 含冷却孔镍基合金次级取向效应的应变梯度晶体塑性有限元研究. 力学学报, 2023, 55(1): 120-133 doi: 10.6052/0459-1879-22-497
Xiong Yukai, Zhao Jianfeng, Rao Wei, Huang Zhiyong, Kang Guozheng, Zhang Xu. Secondary orientation effects of Ni-based alloys with cooling holes: A strain gradient crystal plasticity FEM study. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 120-133 doi: 10.6052/0459-1879-22-497
Citation: Xiong Yukai, Zhao Jianfeng, Rao Wei, Huang Zhiyong, Kang Guozheng, Zhang Xu. Secondary orientation effects of Ni-based alloys with cooling holes: A strain gradient crystal plasticity FEM study. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 120-133 doi: 10.6052/0459-1879-22-497

含冷却孔镍基合金次级取向效应的应变梯度晶体塑性有限元研究

doi: 10.6052/0459-1879-22-497
基金项目: 国家自然科学基金资助项目(12192214, 52192591)
详细信息
    通讯作者:

    张旭, 教授, 主要研究方向为多尺度力学. E-mail: xzhang@swjtu.edu.cn

  • 中图分类号: O344

SECONDARY ORIENTATION EFFECTS OF NI-BASED ALLOYS WITH COOLING HOLES: A STRAIN GRADIENT CRYSTAL PLASTICITY FEM STUDY

  • 摘要: 单晶镍基合金具有优异的耐高温、高强、高韧等性能, 这些力学性能受制造过程引入的次级取向和冷却孔的影响. 已有研究大多关注单孔薄板的变形机理和力学性能, 而工程中应用的往往是多孔薄板, 当前亟需阐明多孔的塑性滑移带变形机理、次级取向效应以及冷却孔引起的应变梯度效应. 文章采用基于位错机制的非局部晶体塑性本构模型对含冷却孔镍基单晶薄板的单拉变形进行了数值模拟. 此模型基于塑性滑移梯度与几何必需位错的关系引入了位错流动项, 因此可有效刻画非均匀变形过程中的应变梯度效应. 为了全面揭示含孔镍基薄板的次级取向效应, 系统研究了[100]和[110]取向(两种次级取向)下镍基薄板的单拉变形行为, 并重点探究了在两种次级取向下冷却孔数量对薄板塑性行为的影响. 此外, 还分析了镍基合金板变形过程中各个滑移系上分切应力变化、主导滑移系开动以及几何必需位错密度的演化过程, 并讨论了塑性滑移量及其分布特征对不同次级取向镍基合金板强度的影响. 研究表明, 单孔和多孔的[110]薄板抗拉强度均低于[100]薄板, 多孔薄板的塑性变形过程比单孔薄板更为复杂且受次级取向影响更大, 并且发生滑移梯度位置主要位于冷却孔附近以及塑性滑移带区域. 研究结果可为工程中镍基合金的设计和服役提供理论指导.

     

  • 图  1  镍基合金薄板有限元模型示意图: (a), (b)单孔薄板; (c), (d)多孔薄板 (单位: mm)

    Figure  1.  Finite element model of Ni-based alloy plate: (a), (b) plate with a hole; (c), (d) plate with five holes

    图  2  镍基合金薄板次级取向示意图

    Figure  2.  Secondary orientation of Ni-based alloy plate

    图  3  无孔和单孔[100]镍基合金薄板模拟和实验结果[29]对比

    Figure  3.  Comparison of simulation and experimental results[29] for [100] plate without hole and with a hole, respectively

    图  4  不同单元数目单孔和多孔薄板单轴拉伸模拟结果

    Figure  4.  Uniaxial tensile simulation results of one-hole plates and five-hole plates with different element numbers

    图  5  两种次级取向的单孔和多孔薄板单轴拉伸模拟结果

    Figure  5.  Uniaxial tensile simulation results of one-hole plates and five-hole plates in two secondary orientations

    图  6  应变为2%时总塑性滑移分布: (a), (c) [100]; (b), (d) [110]

    Figure  6.  Total plastic slip at 2% strain: (a), (c) [100]; (b), (d) [110]

    图  7  [100]取向薄板表面塑性滑移带[30]

    Figure  7.  Plastic slip bands on the surface of [100] plate[30]

    图  8  应变为2%时滑移系开动数量: (a), (c) [100]; (b), (d) [110]

    Figure  8.  The number of activated slip system at 2% strain: (a), (c) [100]; (b), (d) [110]

    图  9  应变为2%时不同冷却孔分布的总塑性滑移: (a) 45°分布含4孔, (b)30°分布含5孔, (c) 45°分布含5孔, (d) 60°分布含5孔

    Figure  9.  Total plastic slip at 2% strain with different cooling hole distribution: plate with (a) four-hole of 45° distribution, (b) five-hole of 30° distribution, (c) five-hole of 45° distribution, (d) five-hole of 60° distribution

    图  10  冷却孔单侧节点不同变形阶段分切应力的演化

    Figure  10.  Evolution of resolved stress at one side nodes of cooling hole

    图  11  应变为2%时最大分切应力云图: (a), (c) [100]; (b), (d) [110]

    Figure  11.  Maximum resolved stress at 2% strain: (a), (c) [100]; (b), (d) [110]

    图  12  冷却孔单侧节点不同变形阶段塑性滑移的演化

    Figure  12.  Evolution of plastic slip at one side nodes of cooling hole

    12  冷却孔单侧节点不同变形阶段塑性滑移的演化(续)

    12.  Evolution of plastic slip at one side nodes of cooling hole (continued)

    图  13  应变为2%时主导滑移系: (a), (c) [100]; (b), (d) [110]

    Figure  13.  Dominant slip system at 2% strain: (a), (c) [100]; (b), (d) [110]

    图  14  单孔(a) [100]薄板和(b) [110]薄板滑移带[11]

    Figure  14.  The slip band for (a) [100] and (b) [110] plates with a hole[11]

    图  15  不同变形阶段塑性滑移特征

    Figure  15.  Plastic slip characteristics in different deformation stages

    图  16  不同次级取向单孔薄板的屈服强度和极限拉伸强度[11]

    Figure  16.  Yield stress and ultimate tensile strength of plates with a hole in different secondary orientations[11]

    图  17  应变为2%时几何必需位错密度分布: (a), (c) [100]; (b), (d) [110]

    Figure  17.  Geometrically necessary dislocation density distribution at 2% strain: (a), (c) [100]; (b), (d) [110]

    图  18  应变为2%时Mises应力分布: (a), (c) [100]; (b), (d) [110]

    Figure  18.  Mises stress distribution at 2% strain: (a), (c) [100]; (b), (d) [110]

    图  19  几何必需位错密度随应变的演化

    Figure  19.  Evolution of geometrically necessary dislocation density with increasing strain

    表  1  镍基合金的非局部晶体塑性模型参数

    Table  1.   Model parameters for nonlocal crystal plasticity used for Ni-based alloys

    PropertySymbolValueReference
    elastic moduli/GPa$ {{C}}_{\text{11}} $252[32]
    $ {{C}}_{\text{12}} $161[32]
    $ {{C}}_{\text{44}} $131[32]
    initial overall dislocation density/m−2${\rho }_{\text{0} }$$ \text{2.4 × }{\text{10}}^{\text{12}} $
    edge contribution to multiplication${{k} }_{\text{1} }$0.1[43]
    dislocation multiplication constant${k} _{\text{2} }$45[43]
    length of Burgers vector/mb$ \text{2.4 × }{\text{10}}^{-\text{10}} $[2]
    minimum edge dipole separation/m${\stackrel{\mathrm{˘} }{{d} } }_{\text{e} }^{\text{α} }$$ \text{2.6 × }{\text{10}}^{-\text{9}} $[43]
    minimum screw dipole separation/m${\stackrel{\mathrm{˘} }{{d} } }_{\text{s} }^{\text{α} }$$\text{1.2 × }{\text{10} }^{-\text{8} }$[43]
    self-diffusivity activation entropy/J${\Delta {H} }_{\text{SD} }$$ \text{3.2 × }{\text{10}}^{-\text{1}\text{9}} $[43]
    self-diffusivity coefficent/($ {\text{m}}^{\text{2}}\cdot{\text{s}}^{-\text{1}} $)${{D} }_{\text{SD} }^{\text{0} }$$ \text{4.4 × }{\text{10}}^{-\text{6}} $[43]
    atomic volume/m3Ω$ \text{1.29 × }{\text{10}}^{-\text{29}} $[43]
    edge jog formation factor${{k} }_{\text{3} }$0.01[43]
    solid-solution concentration${{c} }_{\text{at} }$$ \text{1.6 × }{\text{10}}^{-\text{3}} $
    attack frequency/Hz${f}$$ \text{5 × }{\text{10}}^{\text{10}} $[43]
    strength of barrier/MPa$\tau$5
    solid-solution size b${{d} }_{\text{obst} }$1[43]
    double kink width b${{w} }_{\text{k} }$10[43]
    dislocation viscosity/(Pa·s)η0.1[43]
    energy barrier profile constantsp1[43]
    q1[43]
    下载: 导出CSV

    表  2  镍基合金沿[001]加载时各滑移系Schmid因子

    Table  2.   Schmid factor of the Ni-based alloys loaded along [001] direction

    Slip
    system
    Slip planeSlip
    direction
    Schmidt factor
    $ \xi_{\text{1}} $$ \left(1\mathrm{ }1\mathrm{ }1\right) $$\left[0\mathrm{ }\;1\stackrel{-}{1}\right]$0.408
    $ \xi_{\text{2}} $$ \left(1\mathrm{ }11\right) $$\left[\stackrel{-}{1}0\;\mathrm{ }1\right]$0.408
    $ \xi_{\text{3}} $$ \left(1\mathrm{ }11\right) $$ \left[1\stackrel{-}{1}0\right] $0
    $ \xi_{\text{4}} $$ \left(1\mathrm{ }1\stackrel{-}{1}\right) $$\left[0\stackrel{-}{1}\;\stackrel{-}{1}\right]$0.408
    $ \xi_{\text{5}} $$ \left(1\mathrm{ }1\stackrel{-}{1}\right) $$\left[1\;0\mathrm{ }\;1\right]$0.408
    $ \xi_{\text{6}} $$ \left(1\mathrm{ }1\stackrel{-}{1}\right) $$\left[\stackrel{-}{1}1\;\mathrm{ }0\right]$0
    $ \xi_{\text{7}} $$ \left(\stackrel{-}{1}1\mathrm{ }1\right) $$ \left[0\stackrel{-}{1}1\right] $0.408
    $ \xi_{\text{8}} $$ \left(\stackrel{-}{1}1\mathrm{ }1\right) $$ \left[\stackrel{-}{1}0\stackrel{-}{1}\right] $0.408
    $ \xi_{\text{9}} $$ \left(\stackrel{-}{1}1\mathrm{ }1\right) $$\left[1\;\mathrm{ }1\;\mathrm{ }0\right]$0
    $ \xi_{\text{10}} $$ \left(1\stackrel{-}{1}1\right) $$\left[0\;\mathrm{ }1\;\mathrm{ }1\right]$0.408
    $ \xi_{\text{11}} $$ \left(1\stackrel{-}{1}1\right) $$\left[1\;0\stackrel{-}{1}\right]$0.408
    $ \xi_{\text{12}} $$ \left(1\stackrel{-}{1}1\right) $$\left[\stackrel{-}{1}\;\stackrel{-}{1}0\right]$0
    下载: 导出CSV
  • [1] Mao HZ, Wen ZX, Yue ZF, et al. The evolution of plasticity for nickel-base single crystal cooled blade with film cooling holes. Materials Science & Engineering A, 2013, 587: 79-84
    [2] Gupta S, Bronkhorst CA. Crystal plasticity model for single crystal Ni-based superalloys: Capturing orientation and temperature dependence of flow stress. International Journal of Plasticity, 2021, 137: 102896 doi: 10.1016/j.ijplas.2020.102896
    [3] Pei HQ, Yang YZ, Gu SN, et al. Study on oxidation-creep behavior of a Ni-based single crystal superalloy based on crystal plasticity theory. Materials Science and Engineering: A, 2022, 839: 142834 doi: 10.1016/j.msea.2022.142834
    [4] Zhang WT, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation. International Journal of Fatigue, 2022, 159: 106818 doi: 10.1016/j.ijfatigue.2022.106818
    [5] Li KS, Wang RZ, Yuan GJ, et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a nickel-based superalloy. International Journal of Fatigue, 2021, 143: 106031 doi: 10.1016/j.ijfatigue.2020.106031
    [6] Hou NX, Gou WX, Wen ZX, et al. The influence of crystal orientations on fatigue life of single crystal cooled turbine blade. Materials Science and Engineering A, 2008, 492(1-2): 413-418
    [7] 张健, 王莉, 王栋等. 镍基单晶高温合金的研发进展. 金属学报, 2019, 55: 1077-1094 (Zhang Jian, Wang Li, Wang Dong, et al. Recent progress in research and development of nickel-based single crystal superalloys. Acta Metallurgica Sinica, 2019, 55: 1077-1094 (in Chinese)
    [8] 张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究. 金属学报, 2013, 49: 1508-1520 (Zhang Hang, Xu QingYan, Sun ChangBo, et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy. Acta Metallurgica Sinica, 2013, 49: 1508-1520 (in Chinese)
    [9] Wang LN, Liu Y, Yu JJ, et al. Orientation and temperature dependence of yielding and deformation behavior of a nickel-base single crystal superalloy. Materials Science and Engineering A, 2009, 505(1-2): 144-150 doi: 10.1016/j.msea.2008.12.039
    [10] Zhai Y, Khan MK, Correia J, et al. Effect of secondary crystal orientations on the deformation anisotropy for nickel-based single-crystal plate with notch feature. Journal of Strain Analysis, 2019, 54(1): 54-64
    [11] Zhou ZJ, Wang L, Wang D, et al. Effect of secondary orientation on room temperature tensile behaviors of Ni-base single crystal superalloys. Materials Science & Engineering A, 2016, 659: 130-142
    [12] Zhou ZJ, Liu T, Pu S, et al. Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy. Journal of Alloys and Compounds, 2015, 647: 802-808 doi: 10.1016/j.jallcom.2015.06.069
    [13] Weck A, Wilkinson DS. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes. Acta Materialia, 2008, 56(8): 1774-1784 doi: 10.1016/j.actamat.2007.12.035
    [14] Wen Z, Liang J, Liu C, et al. Prediction method for creep life of thin-wall specimen with film cooling holes in Ni-based single-crystal superalloy. International Journal of Mechanical Sciences, 2018, 141: 276-289 doi: 10.1016/j.ijmecsci.2018.04.018
    [15] Arakere NK, Siddiqui S, Ebrahimi F. Evolution of plasticity in notched Ni-base superalloy single crystals. International Journal of Solids and Structures, 2009, 46(16): 3027-3044 doi: 10.1016/j.ijsolstr.2009.04.006
    [16] Dindarlou S, Castelluccio GM. Substructure-sensitive crystal plasticity with material-invariant parameters. International Journal of Plasticity, 2022, 155: 103306 doi: 10.1016/j.ijplas.2022.103306
    [17] Wen Z, Pei H, Yang H, et al. A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes. International Journal of Fatigue, 2018, 111: 243-255 doi: 10.1016/j.ijfatigue.2018.02.020
    [18] Soare MA, Huang S, Karadge M. Crystal plasticity model for nickel-based superalloy rené 88 dt at elevated temperature. Superalloys, 2020, 2020: 659-668
    [19] Sabnis PA, Forest S, Arakere NK, et al. Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy. International Journal of Plasticity, 2013, 51: 200-217 doi: 10.1016/j.ijplas.2013.05.004
    [20] Knezevic M, Crapps J, Beyerlein IJ, et al. Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements. International Journal of Mechanical Sciences, 2016, 105: 227-238 doi: 10.1016/j.ijmecsci.2015.11.021
    [21] Keshavarz S, Ghosh S. Hierarchical crystal plasticity FE model for nickel-based superalloys: Sub-grain microstructures to polycrystalline aggregates. International Journal of Solids and Structures, 2015, 55: 17-31 doi: 10.1016/j.ijsolstr.2014.03.037
    [22] Han QN, Qiu WH, Shang YB, et al. In-situ SEM observation and crystal plasticity finite element simulation of fretting fatigue crack formation in Ni-base single-crystal superalloys. Tribology International, 2016, 101: 33-42 doi: 10.1016/j.triboint.2016.03.025
    [23] Eidel B. Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal. Acta Materialia, 2011, 59(4): 1761-1771 doi: 10.1016/j.actamat.2010.11.042
    [24] Sakaguchi M, Komamura R, Chen X, et al. Crystal plasticity assessment of crystallographic Stage I crack propagation in a Ni-based single crystal superalloy. International Journal of Fatigue, 2019, 123: 10-21 doi: 10.1016/j.ijfatigue.2019.02.003
    [25] Li ZW, Wen ZX, Gu S, et al. In-situ observation of crack initiation and propagation in Ni-based superalloy with film cooling holes during tensile test. Journal of Alloys and Compounds, 2019, 793: 65-76
    [26] 熊骏, 李振环, 朱亚新等. 基于微结构动态演化机制的单晶镍基高温合金晶体塑性本构及其有限元模拟. 力学学报, 2017, 49: 765-781 (Xiong Jun, Li ZHhuan, Zhu YaXin, et al. Microstructure evolution mechanism based crystal-plasticity constitutive model for nickel-based superalloy and its finite element simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49: 765-781 (in Chinese)
    [27] Schilli S, Seifert T, Kreins M, et al. Bauschinger effect and latent hardening under cyclic micro-bending of Ni-base Alloy 718 single crystals: Part II. Single crystal plasticity modeling with latent kinematic hardening. Materials Science and Engineering: A, 2022, 830: 142030
    [28] Shanthraj P, Zikry MA. Dislocation-density mechanisms for void interactions in crystalline materials. International Journal of Plasticity, 2012, 34: 154-163 doi: 10.1016/j.ijplas.2012.01.008
    [29] Shang Y, Zhang H, Hou H, et al. High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation. Journal of Alloys and Compounds, 2019, 782: 619-631 doi: 10.1016/j.jallcom.2018.12.232
    [30] Wen ZX, Li ZW, Zhang YM, et al. Surface slip deformation characteristics for perforated Ni-based single crystal thin plates with square and triangular penetration patterns. Materials Science & Engineering A, 2018, 723: 56-69
    [31] Li Z, Gao H, Wen Z, et al. Microcrack initiation behavior around film cooling holes in a Ni-based single crystal: In situ observation and crystal plastic analysis. Materials Science & Engineering A, 2020, 771: 138609
    [32] Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations. International Journal of Plasticity, 2019, 119: 249-272 doi: 10.1016/j.ijplas.2019.04.009
    [33] Zhang T, Collins DM, Dunne FPE, et al. Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal Ni superalloy strains and rotations under thermal loading. Acta Materialia, 2014, 80: 25-38 doi: 10.1016/j.actamat.2014.07.036
    [34] Ali MA, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study. International Journal of Plasticity, 2020, 128: 102659 doi: 10.1016/j.ijplas.2020.102659
    [35] Roters F, Diehl M, Shanthraj P, et al. DAMASK-The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158: 420-478 doi: 10.1016/j.commatsci.2018.04.030
    [36] Roters F. Advanced Material Models for the Crystal Plasticity Finite Element Method. Warstein: Fakultät für Georessourcen und Materialtechnik, 2011
    [37] Kords C. On the Role of Dislocation Transport in the Constitutive Description of Crystal Plasticity. Berlin: Epubli GmbH, 2013
    [38] Orowan E, Zur kristallplastizitgt. I. Tieftemperaturplastizitiit und beckersche formel. Zeitschrift für Physik, 1934, 89(9-10): 605
    [39] Arsenlis A, Parks DM. Modeling the evolution of crystallographic dislocation density in crystal plasticity. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 1979 doi: 10.1016/S0022-5096(01)00134-X
    [40] Hirth JP, Lothe J. Theory of Dislocations. New York: Wiley, 1982
    [41] Kubin L, Devincre B, Hoc T. Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Materialia, 2008, 56(20): 6040-6049 doi: 10.1016/j.actamat.2008.08.012
    [42] Nye JF. Some geometrical relations in dislocated crystals. Acta Metallurgica, 1952, 1(2): 153-162
    [43] Su Y, Han QN, Qiu WH, et al. High temperature in-situ SEM observation and crystal plasticity simulation on fretting fatigue of Ni-based single crystal superalloys. International Journal of Plasticity, 2020, 127: 102645 doi: 10.1016/j.ijplas.2019.102645
    [44] Qiu WH, He ZW, Fan YN, et al. Effects of secondary orientation on crack closure behavior of nickel-based single crystal superalloys. International Journal of Fatigue, 2016, 83: 335-343 doi: 10.1016/j.ijfatigue.2015.11.004
    [45] Suzuki S, Sakaguchi M, Inoue H. Temperature dependent fatigue crack propagation in a single crystal Ni-base superalloy affected by primary and secondary orientations. Materials Science & Engineering A, 2018, 724: 559-565
    [46] Seeger A. The temperature dependence of the critical shear stress and of work-hardening of metal crystals. Philosophical Magazine and Journal of Science, 2010, 45(366): 771
    [47] Sabnis PA, Mazière M, Forest S, et al. Effect of secondary orientation on notch-tip plasticity in superalloy single crystals. International Journal of Plasticity, 2012, 28(1): 102-123 doi: 10.1016/j.ijplas.2011.06.003
    [48] Ashby MF, The deformation of plastically non-homogeneous materials. Philosophical Magazine, 1970, 21: 399-424
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  142
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-15
  • 录用日期:  2022-11-28
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2023-01-04

目录

    /

    返回文章
    返回