SECONDARY ORIENTATION EFFECTS OF NI-BASED ALLOYS WITH COOLING HOLES: A STRAIN GRADIENT CRYSTAL PLASTICITY FEM STUDY
-
摘要: 单晶镍基合金具有优异的耐高温、高强、高韧等性能, 这些力学性能受制造过程引入的次级取向和冷却孔的影响. 已有研究大多关注单孔薄板的变形机理和力学性能, 而工程中应用的往往是多孔薄板, 当前亟需阐明多孔的塑性滑移带变形机理、次级取向效应以及冷却孔引起的应变梯度效应. 文章采用基于位错机制的非局部晶体塑性本构模型对含冷却孔镍基单晶薄板的单拉变形进行了数值模拟. 此模型基于塑性滑移梯度与几何必需位错的关系引入了位错流动项, 因此可有效刻画非均匀变形过程中的应变梯度效应. 为了全面揭示含孔镍基薄板的次级取向效应, 系统研究了[100]和[110]取向(两种次级取向)下镍基薄板的单拉变形行为, 并重点探究了在两种次级取向下冷却孔数量对薄板塑性行为的影响. 此外, 还分析了镍基合金板变形过程中各个滑移系上分切应力变化、主导滑移系开动以及几何必需位错密度的演化过程, 并讨论了塑性滑移量及其分布特征对不同次级取向镍基合金板强度的影响. 研究表明, 单孔和多孔的[110]薄板抗拉强度均低于[100]薄板, 多孔薄板的塑性变形过程比单孔薄板更为复杂且受次级取向影响更大, 并且发生滑移梯度位置主要位于冷却孔附近以及塑性滑移带区域. 研究结果可为工程中镍基合金的设计和服役提供理论指导.Abstract: Single crystal Ni-based alloys possess excellent properties such as high temperature resistance, high strength and high toughness. Thses mechanical properties are affected by secondary orientation and cooling holes induced during complex manufacturing processes. The current research mainly focuses on the deformation mechanism and mechanical response of plates with one hole. While, the plate with multiple holes is often used in engineering. At present, it is urgent to clarify the deformation mechanism of the plate with multiple holes, the secondary orientation effect, and the strain gradient effect caused by cooling holes. In this paper, a nonlocal crystal plasticity constitutive model based on the dislocation mechanism is used to numerically simulate the uniaxial tensile deformation behavior of the Ni-based single crystal plate with cooling holes. A dislocation flux term is derived based on the relationship between the plastic slip gradient and geometrically necessary dislocations, enabling this crystal plasticity model to effectively describe the strain gradient effect. In order to comprehensively reveal the secondary orientation effect of Ni-based alloys with cooling holes, this paper systematically studies the uniaxial tensile deformation behavior of sheets with [100] and [110] orientations (two secondary orientations). The influence of the number of holes on the plastic behavior of the plate with two secondary orientations is investigated. By analyzing the variation of the resolved stress on slip systems, activation of the dominant slip systems and the evolution of geometrically necessary dislocation density during the deformation of Ni-based alloy plates, the effects of plastic slip and its distribution on the strength of Ni-based alloy plates with different secondary orientations are discussed. The results show that the tensile strength of [110] plate is lower than that of [100] plate. Furthermore, the plastic deformation process of the five-hole plate is more complicated than that of the one-hole plate and is easier to be affected by secondary orientation. Finally, the location of the slip gradient is mainly located near the cooling hole and the plastic slip zone. The research results can provide theory basis for the design and service of Ni-based alloys in engineering.
-
Key words:
- crystal plasticity /
- Ni-based alloy /
- cooling holes /
- secondary orientation /
- plastic slip /
- strain gradient
-
图 9 应变为2%时不同冷却孔分布的总塑性滑移: (a) 45°分布含4孔, (b)30°分布含5孔, (c) 45°分布含5孔, (d) 60°分布含5孔
Figure 9. Total plastic slip at 2% strain with different cooling hole distribution: plate with (a) four-hole of 45° distribution, (b) five-hole of 30° distribution, (c) five-hole of 45° distribution, (d) five-hole of 60° distribution
表 1 镍基合金的非局部晶体塑性模型参数
Table 1. Model parameters for nonlocal crystal plasticity used for Ni-based alloys
Property Symbol Value Reference elastic moduli/GPa $ {{C}}_{\text{11}} $ 252 [32] $ {{C}}_{\text{12}} $ 161 [32] $ {{C}}_{\text{44}} $ 131 [32] initial overall dislocation density/m−2 ${\rho }_{\text{0} }$ $ \text{2.4 × }{\text{10}}^{\text{12}} $ edge contribution to multiplication ${{k} }_{\text{1} }$ 0.1 [43] dislocation multiplication constant ${k} _{\text{2} }$ 45 [43] length of Burgers vector/m b $ \text{2.4 × }{\text{10}}^{-\text{10}} $ [2] minimum edge dipole separation/m ${\stackrel{\mathrm{˘} }{{d} } }_{\text{e} }^{\text{α} }$ $ \text{2.6 × }{\text{10}}^{-\text{9}} $ [43] minimum screw dipole separation/m ${\stackrel{\mathrm{˘} }{{d} } }_{\text{s} }^{\text{α} }$ $\text{1.2 × }{\text{10} }^{-\text{8} }$ [43] self-diffusivity activation entropy/J ${\Delta {H} }_{\text{SD} }$ $ \text{3.2 × }{\text{10}}^{-\text{1}\text{9}} $ [43] self-diffusivity coefficent/($ {\text{m}}^{\text{2}}\cdot{\text{s}}^{-\text{1}} $) ${{D} }_{\text{SD} }^{\text{0} }$ $ \text{4.4 × }{\text{10}}^{-\text{6}} $ [43] atomic volume/m3 Ω $ \text{1.29 × }{\text{10}}^{-\text{29}} $ [43] edge jog formation factor ${{k} }_{\text{3} }$ 0.01 [43] solid-solution concentration ${{c} }_{\text{at} }$ $ \text{1.6 × }{\text{10}}^{-\text{3}} $ attack frequency/Hz ${f}$ $ \text{5 × }{\text{10}}^{\text{10}} $ [43] strength of barrier/MPa $\tau$ 5 solid-solution size b ${{d} }_{\text{obst} }$ 1 [43] double kink width b ${{w} }_{\text{k} }$ 10 [43] dislocation viscosity/(Pa·s) η 0.1 [43] energy barrier profile constants p 1 [43] q 1 [43] 表 2 镍基合金沿[001]加载时各滑移系Schmid因子
Table 2. Schmid factor of the Ni-based alloys loaded along [001] direction
Slip
systemSlip plane Slip
directionSchmidt factor $ \xi_{\text{1}} $ $ \left(1\mathrm{ }1\mathrm{ }1\right) $ $\left[0\mathrm{ }\;1\stackrel{-}{1}\right]$ 0.408 $ \xi_{\text{2}} $ $ \left(1\mathrm{ }11\right) $ $\left[\stackrel{-}{1}0\;\mathrm{ }1\right]$ 0.408 $ \xi_{\text{3}} $ $ \left(1\mathrm{ }11\right) $ $ \left[1\stackrel{-}{1}0\right] $ 0 $ \xi_{\text{4}} $ $ \left(1\mathrm{ }1\stackrel{-}{1}\right) $ $\left[0\stackrel{-}{1}\;\stackrel{-}{1}\right]$ 0.408 $ \xi_{\text{5}} $ $ \left(1\mathrm{ }1\stackrel{-}{1}\right) $ $\left[1\;0\mathrm{ }\;1\right]$ 0.408 $ \xi_{\text{6}} $ $ \left(1\mathrm{ }1\stackrel{-}{1}\right) $ $\left[\stackrel{-}{1}1\;\mathrm{ }0\right]$ 0 $ \xi_{\text{7}} $ $ \left(\stackrel{-}{1}1\mathrm{ }1\right) $ $ \left[0\stackrel{-}{1}1\right] $ 0.408 $ \xi_{\text{8}} $ $ \left(\stackrel{-}{1}1\mathrm{ }1\right) $ $ \left[\stackrel{-}{1}0\stackrel{-}{1}\right] $ 0.408 $ \xi_{\text{9}} $ $ \left(\stackrel{-}{1}1\mathrm{ }1\right) $ $\left[1\;\mathrm{ }1\;\mathrm{ }0\right]$ 0 $ \xi_{\text{10}} $ $ \left(1\stackrel{-}{1}1\right) $ $\left[0\;\mathrm{ }1\;\mathrm{ }1\right]$ 0.408 $ \xi_{\text{11}} $ $ \left(1\stackrel{-}{1}1\right) $ $\left[1\;0\stackrel{-}{1}\right]$ 0.408 $ \xi_{\text{12}} $ $ \left(1\stackrel{-}{1}1\right) $ $\left[\stackrel{-}{1}\;\stackrel{-}{1}0\right]$ 0 -
[1] Mao HZ, Wen ZX, Yue ZF, et al. The evolution of plasticity for nickel-base single crystal cooled blade with film cooling holes. Materials Science & Engineering A, 2013, 587: 79-84 [2] Gupta S, Bronkhorst CA. Crystal plasticity model for single crystal Ni-based superalloys: Capturing orientation and temperature dependence of flow stress. International Journal of Plasticity, 2021, 137: 102896 doi: 10.1016/j.ijplas.2020.102896 [3] Pei HQ, Yang YZ, Gu SN, et al. Study on oxidation-creep behavior of a Ni-based single crystal superalloy based on crystal plasticity theory. Materials Science and Engineering: A, 2022, 839: 142834 doi: 10.1016/j.msea.2022.142834 [4] Zhang WT, Jiang R, Zhao Y, et al. Effects of temperature and microstructure on low cycle fatigue behaviour of a PM Ni-based superalloy: EBSD assessment and crystal plasticity simulation. International Journal of Fatigue, 2022, 159: 106818 doi: 10.1016/j.ijfatigue.2022.106818 [5] Li KS, Wang RZ, Yuan GJ, et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a nickel-based superalloy. International Journal of Fatigue, 2021, 143: 106031 doi: 10.1016/j.ijfatigue.2020.106031 [6] Hou NX, Gou WX, Wen ZX, et al. The influence of crystal orientations on fatigue life of single crystal cooled turbine blade. Materials Science and Engineering A, 2008, 492(1-2): 413-418 [7] 张健, 王莉, 王栋等. 镍基单晶高温合金的研发进展. 金属学报, 2019, 55: 1077-1094 (Zhang Jian, Wang Li, Wang Dong, et al. Recent progress in research and development of nickel-based single crystal superalloys. Acta Metallurgica Sinica, 2019, 55: 1077-1094 (in Chinese) [8] 张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究. 金属学报, 2013, 49: 1508-1520 (Zhang Hang, Xu QingYan, Sun ChangBo, et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy. Acta Metallurgica Sinica, 2013, 49: 1508-1520 (in Chinese) [9] Wang LN, Liu Y, Yu JJ, et al. Orientation and temperature dependence of yielding and deformation behavior of a nickel-base single crystal superalloy. Materials Science and Engineering A, 2009, 505(1-2): 144-150 doi: 10.1016/j.msea.2008.12.039 [10] Zhai Y, Khan MK, Correia J, et al. Effect of secondary crystal orientations on the deformation anisotropy for nickel-based single-crystal plate with notch feature. Journal of Strain Analysis, 2019, 54(1): 54-64 [11] Zhou ZJ, Wang L, Wang D, et al. Effect of secondary orientation on room temperature tensile behaviors of Ni-base single crystal superalloys. Materials Science & Engineering A, 2016, 659: 130-142 [12] Zhou ZJ, Liu T, Pu S, et al. Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy. Journal of Alloys and Compounds, 2015, 647: 802-808 doi: 10.1016/j.jallcom.2015.06.069 [13] Weck A, Wilkinson DS. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes. Acta Materialia, 2008, 56(8): 1774-1784 doi: 10.1016/j.actamat.2007.12.035 [14] Wen Z, Liang J, Liu C, et al. Prediction method for creep life of thin-wall specimen with film cooling holes in Ni-based single-crystal superalloy. International Journal of Mechanical Sciences, 2018, 141: 276-289 doi: 10.1016/j.ijmecsci.2018.04.018 [15] Arakere NK, Siddiqui S, Ebrahimi F. Evolution of plasticity in notched Ni-base superalloy single crystals. International Journal of Solids and Structures, 2009, 46(16): 3027-3044 doi: 10.1016/j.ijsolstr.2009.04.006 [16] Dindarlou S, Castelluccio GM. Substructure-sensitive crystal plasticity with material-invariant parameters. International Journal of Plasticity, 2022, 155: 103306 doi: 10.1016/j.ijplas.2022.103306 [17] Wen Z, Pei H, Yang H, et al. A combined CP theory and TCD for predicting fatigue lifetime in single-crystal superalloy plates with film cooling holes. International Journal of Fatigue, 2018, 111: 243-255 doi: 10.1016/j.ijfatigue.2018.02.020 [18] Soare MA, Huang S, Karadge M. Crystal plasticity model for nickel-based superalloy rené 88 dt at elevated temperature. Superalloys, 2020, 2020: 659-668 [19] Sabnis PA, Forest S, Arakere NK, et al. Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy. International Journal of Plasticity, 2013, 51: 200-217 doi: 10.1016/j.ijplas.2013.05.004 [20] Knezevic M, Crapps J, Beyerlein IJ, et al. Anisotropic modeling of structural components using embedded crystal plasticity constructive laws within finite elements. International Journal of Mechanical Sciences, 2016, 105: 227-238 doi: 10.1016/j.ijmecsci.2015.11.021 [21] Keshavarz S, Ghosh S. Hierarchical crystal plasticity FE model for nickel-based superalloys: Sub-grain microstructures to polycrystalline aggregates. International Journal of Solids and Structures, 2015, 55: 17-31 doi: 10.1016/j.ijsolstr.2014.03.037 [22] Han QN, Qiu WH, Shang YB, et al. In-situ SEM observation and crystal plasticity finite element simulation of fretting fatigue crack formation in Ni-base single-crystal superalloys. Tribology International, 2016, 101: 33-42 doi: 10.1016/j.triboint.2016.03.025 [23] Eidel B. Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal. Acta Materialia, 2011, 59(4): 1761-1771 doi: 10.1016/j.actamat.2010.11.042 [24] Sakaguchi M, Komamura R, Chen X, et al. Crystal plasticity assessment of crystallographic Stage I crack propagation in a Ni-based single crystal superalloy. International Journal of Fatigue, 2019, 123: 10-21 doi: 10.1016/j.ijfatigue.2019.02.003 [25] Li ZW, Wen ZX, Gu S, et al. In-situ observation of crack initiation and propagation in Ni-based superalloy with film cooling holes during tensile test. Journal of Alloys and Compounds, 2019, 793: 65-76 [26] 熊骏, 李振环, 朱亚新等. 基于微结构动态演化机制的单晶镍基高温合金晶体塑性本构及其有限元模拟. 力学学报, 2017, 49: 765-781 (Xiong Jun, Li ZHhuan, Zhu YaXin, et al. Microstructure evolution mechanism based crystal-plasticity constitutive model for nickel-based superalloy and its finite element simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49: 765-781 (in Chinese) [27] Schilli S, Seifert T, Kreins M, et al. Bauschinger effect and latent hardening under cyclic micro-bending of Ni-base Alloy 718 single crystals: Part II. Single crystal plasticity modeling with latent kinematic hardening. Materials Science and Engineering: A, 2022, 830: 142030 [28] Shanthraj P, Zikry MA. Dislocation-density mechanisms for void interactions in crystalline materials. International Journal of Plasticity, 2012, 34: 154-163 doi: 10.1016/j.ijplas.2012.01.008 [29] Shang Y, Zhang H, Hou H, et al. High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation. Journal of Alloys and Compounds, 2019, 782: 619-631 doi: 10.1016/j.jallcom.2018.12.232 [30] Wen ZX, Li ZW, Zhang YM, et al. Surface slip deformation characteristics for perforated Ni-based single crystal thin plates with square and triangular penetration patterns. Materials Science & Engineering A, 2018, 723: 56-69 [31] Li Z, Gao H, Wen Z, et al. Microcrack initiation behavior around film cooling holes in a Ni-based single crystal: In situ observation and crystal plastic analysis. Materials Science & Engineering A, 2020, 771: 138609 [32] Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations. International Journal of Plasticity, 2019, 119: 249-272 doi: 10.1016/j.ijplas.2019.04.009 [33] Zhang T, Collins DM, Dunne FPE, et al. Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal Ni superalloy strains and rotations under thermal loading. Acta Materialia, 2014, 80: 25-38 doi: 10.1016/j.actamat.2014.07.036 [34] Ali MA, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study. International Journal of Plasticity, 2020, 128: 102659 doi: 10.1016/j.ijplas.2020.102659 [35] Roters F, Diehl M, Shanthraj P, et al. DAMASK-The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158: 420-478 doi: 10.1016/j.commatsci.2018.04.030 [36] Roters F. Advanced Material Models for the Crystal Plasticity Finite Element Method. Warstein: Fakultät für Georessourcen und Materialtechnik, 2011 [37] Kords C. On the Role of Dislocation Transport in the Constitutive Description of Crystal Plasticity. Berlin: Epubli GmbH, 2013 [38] Orowan E, Zur kristallplastizitgt. I. Tieftemperaturplastizitiit und beckersche formel. Zeitschrift für Physik, 1934, 89(9-10): 605 [39] Arsenlis A, Parks DM. Modeling the evolution of crystallographic dislocation density in crystal plasticity. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 1979 doi: 10.1016/S0022-5096(01)00134-X [40] Hirth JP, Lothe J. Theory of Dislocations. New York: Wiley, 1982 [41] Kubin L, Devincre B, Hoc T. Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Materialia, 2008, 56(20): 6040-6049 doi: 10.1016/j.actamat.2008.08.012 [42] Nye JF. Some geometrical relations in dislocated crystals. Acta Metallurgica, 1952, 1(2): 153-162 [43] Su Y, Han QN, Qiu WH, et al. High temperature in-situ SEM observation and crystal plasticity simulation on fretting fatigue of Ni-based single crystal superalloys. International Journal of Plasticity, 2020, 127: 102645 doi: 10.1016/j.ijplas.2019.102645 [44] Qiu WH, He ZW, Fan YN, et al. Effects of secondary orientation on crack closure behavior of nickel-based single crystal superalloys. International Journal of Fatigue, 2016, 83: 335-343 doi: 10.1016/j.ijfatigue.2015.11.004 [45] Suzuki S, Sakaguchi M, Inoue H. Temperature dependent fatigue crack propagation in a single crystal Ni-base superalloy affected by primary and secondary orientations. Materials Science & Engineering A, 2018, 724: 559-565 [46] Seeger A. The temperature dependence of the critical shear stress and of work-hardening of metal crystals. Philosophical Magazine and Journal of Science, 2010, 45(366): 771 [47] Sabnis PA, Mazière M, Forest S, et al. Effect of secondary orientation on notch-tip plasticity in superalloy single crystals. International Journal of Plasticity, 2012, 28(1): 102-123 doi: 10.1016/j.ijplas.2011.06.003 [48] Ashby MF, The deformation of plastically non-homogeneous materials. Philosophical Magazine, 1970, 21: 399-424 -