EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

物理信息依赖核函数配点法的研究进展

傅卓佳 李明娟 习强 徐文志 刘庆国

傅卓佳, 李明娟, 习强, 徐文志, 刘庆国. 物理信息依赖核函数配点法的研究进展. 力学学报, 2022, 54(12): 3352-3365 doi: 10.6052/0459-1879-22-485
引用本文: 傅卓佳, 李明娟, 习强, 徐文志, 刘庆国. 物理信息依赖核函数配点法的研究进展. 力学学报, 2022, 54(12): 3352-3365 doi: 10.6052/0459-1879-22-485
Fu Zhuojia, Li Mingjuan, Xi Qiang, Xu Wenzhi, Liu Qingguo. Research advances on the collocation methods based on the physical-informed kernel functions. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3352-3365 doi: 10.6052/0459-1879-22-485
Citation: Fu Zhuojia, Li Mingjuan, Xi Qiang, Xu Wenzhi, Liu Qingguo. Research advances on the collocation methods based on the physical-informed kernel functions. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3352-3365 doi: 10.6052/0459-1879-22-485

物理信息依赖核函数配点法的研究进展

doi: 10.6052/0459-1879-22-485
基金项目: 国家自然科学基金(12122205)和斯洛文尼亚研究活动公共机构 (ARRS) (P2-0162, L2-3173)资助项目
详细信息
    作者简介:

    傅卓佳, 教授, 主要研究方向: 计算力学与工程仿真. E-mail: paul212063@hhu.edu.cn

  • 中图分类号: O302

RESEARCH ADVANCES ON THE COLLOCATION METHODS BASED ON THE PHYSICAL-INFORMED KERNEL FUNCTIONS

  • 摘要: 在过去几十年里, 尽管有限元等传统计算方法已被成功用于众多科学与工程领域, 但是其在数值模拟无限域波传播、大尺寸比结构、工程反演和移动边界问题时仍面临计算量大、计算效率低、网格生成困难等计算难题. 本文介绍一类基于物理信息依赖核函数的无网格配点法及其在上述难点问题中的应用. 物理信息依赖核函数配点法的关键在于构建能反映问题微分控制方程物理信息的基函数. 基于这些物理信息依赖核函数, 该方法无需/仅需少量配点对所求微分控制方程进行离散, 即可有效提高计算效率. 本文首先介绍满足常见齐次微分方程的基本解、调和函数、径向Trefftz函数以及T完备函数等典型物理信息依赖核函数. 接着依次介绍非齐次、非均质、非稳态以及隐式微分方程构造物理信息依赖核函数的方法. 随后, 根据所求问题特点, 选用全域配点或局部配点技术, 建立相应的物理信息依赖核函数配点法. 最后, 通过几个典型算例验证所提物理信息依赖核函数配点法的有效性.

     

  • 图  1  配点法采用不同试函数求解齐次微分方程问题式(5)和式(6)的计算结果. PIKF-12表示在计算区域边界上均匀布置12个节点并采用物理信息依赖核函数$ \phi {\text{ = }}{J_0}\left( {\sqrt 2 kr} \right) $作为试函数; RBF-16/36表示在计算区域上均匀布置16/36个节点并采用径向基函数$ \phi {\text{ = }}{r^3} $作为试函数

    Figure  1.  Numerical results by using collocation method with different trial functions for solving homogeneous differential equation problem Eqs. (5) and (6). PIKF-12 represents $ \phi {\text{ = }}{J_0}\left( {\sqrt 2 kr} \right) $ is the trial function and 12 nodes are placed at the boundary of computational domain; RBF-16/36 represents $ \phi {\text{ = }}{r^3} $ is the trial function and 16/36 nodes are uniformly placed in computational domain

    图  2  物理信息依赖核函数配点法的节点离散示意图: (a) 奇异基本解$ {G_F} $和(b)无奇异物理信息依赖核函数($ {G_H} $,$ {G_{RT}} $,$ {G_T} $)

    Figure  2.  Sketch of node discretization of PIKF collocation methods: (a) singular fundamental solutions $ {G_F} $ and (b) nonsingular PIKFs ($ {G_H} $, $ {G_{RT}} $,$ {G_T} $)

    图  3  物理信息依赖核函数配点法的节点离散及局部子区域示意图: (a) 节点离散及节点${\boldsymbol{x}}_1^k$的局部子区域${\varXi _k}$; (b)无奇异物理信息依赖核函数的局部子区域节点离散; (c)奇异物理信息依赖核函数的局部子区域节点离散

    Figure  3.  Sketch of node discretization and local subdomain of PIKF collocation method: (a) node discretization and local subregion ${\varXi _k}$ for node ${\boldsymbol{x}}_1^k$; (b) node discretization of local subdomain ${\varXi _k}$ for nonsingular PIKFs; (c) node discretization of local subdomain ${\varXi _k}$ for singular PIKFs

    图  4  球体结构受不同频率简谐激励力作用在点$\left( {2,0,0} \right)$处的声压级变化

    Figure  4.  Sound pressure level results of spherical structure under simple harmonic excitation force on (2, 0, 0) with different frequencies

    图  5  受100 Hz简谐激励力下球体结构附近区域的声压级分布

    Figure  5.  Sound pressure level distribution around the spherical structure under simple harmonic excitation force at frequency 100 Hz

    图  6  功能梯度材料变半径圆环区域示意图

    Figure  6.  Schematic configuration of variable radius FGM ring

    图  7  SR=100的变半径圆环中轴线${{r}_{{\rm{c}}}}=R-0.475+{0.45\theta }/{\text{π} }\;$上不同时刻的温度分布

    Figure  7.  Temperature distributions along with the curve ${{r}_{{\rm{c}}}}=R-0.475+{0.45\theta }/{\text{π} }\;$ inside the FGM under different time instants

    图  8  三维类肿瘤区域及可测边界测量点示意图

    Figure  8.  Schematic configuration of 3D tumor-like domain with measurement points (○).

    图  9  物理信息依赖核函数配点法采用可测边界${\varGamma _1}$上不同人工噪音水平的100个测量点数据反演得到位势问题的结果

    Figure  9.  Numerical results obtained by using PIKF collocation method with 100 measurement points under different noise levels on accessible boundary ${\varGamma _1}$

    图  10  三维数值波浪水槽和梯形潜堤横向剖面示意图

    Figure  10.  Schematic diagram of 3D numerical wave flume and transverse profile of trapezoidal submerged breakwater

    图  11  最后两个周期内三维数值波浪水槽自由表面两个观测点处(G3和G5)的高程演化

    Figure  11.  Elevation evolutions at two gauges (G3 and G5) of 3D numerical wave flume in the last 2 periods

    表  1  Web of Science数据库中各计算方法的论文发表数(搜索日期: 2022-9-5)

    Table  1.   Bibliographic database search of computational methods based on the Web of Science (search date: September 5, 2022)

    Numerical methodsSearch phrase in topic fieldNo. of entries
    FEMfinite element(s)585 197
    FDMfinite difference(s)102 794
    FVMfinite volume(s)39 616
    BEMboundary element(s) or boundary integral(s)34 105
    DEMdiscrete element(s)19 795
    Meshless and particle methodscollocation method(s) or meshless or meshfree or material point method or element-free or smoothed particle hydrodynamics29 807

    (11 192)
    下载: 导出CSV

    表  2  常见微分方程算子的基本解$ {G_F} $[12]

    Table  2.   Fundamental solutions $ {G_F} $ of common-used differential equation operators[12]

    $ \Re $2D3D
    $ \Delta $$ - \dfrac{{\ln \left( r \right)}}{{2{\text{π }}}} $$\dfrac{1}{ {4{\text{π}}r} }$
    $ \Delta + {k^2} $$\dfrac{ { {\text{i} }{\rm{H}}_0^{\left( 1 \right)}\left( {kr} \right)} }{4}$$\dfrac{ { {{\rm{e}}^{ - {\text{i} }kr} } } }{ {4{\text{π} }r} }$
    $ \Delta - {k^2} $$\dfrac{ { {{\rm{K}}_0}(kr)} }{ {2{\text{π } } } }$$\dfrac{ { {{\rm{e}}^{ - kr} } } }{ {4{\text{π} }r} }$
    $D\Delta + {\boldsymbol{v} } \cdot \nabla - {k^2}$$\dfrac{ { { {\rm{K} }_0}(\mu r){{\rm{e}}^{ - \tfrac{ { {\boldsymbol{v} } \cdot r} }{ {2 D} } } } } }{ {2{\text{π } } } }$$\dfrac{ { {{\rm{e}}^{ - \mu r - \tfrac{ { {\boldsymbol{v} } \cdot r} }{ {2 D} } } } } }{ {4{\text{π} }r} }$
    $ {\Delta ^2} $$ \dfrac{{{r^2}\ln \left( r \right) - {r^2}}}{{8{\text{π }}}} $$\dfrac{r}{ { { {8\text{π } } } } }$
    下载: 导出CSV

    表  3  常见微分方程算子的调和函数$ {G_H} $和径向Trefftz函数$ {G_{RT}} $[12]

    Table  3.   Harmonic functions $ {G_H} $ and radial Trefftz functions $ {G_{RT}} $ of common-used differential equation operators[12]

    $ \Re $2D3D
    $ \Delta $${{\rm{e}}^{ - c\left(r_1^2 - r_2^2\right)} }\cos (2 c{r_1}{r_2})$${{\rm{e}}^{ - c\left(r_1^2 - r_2^2\right)} }\cos \left(2 c{r_1}{r_2}\right)+ {{\rm{e}}^{ - c\left(r_2^2 - r_3^2\right)} }\cos \left(2 c{r_2}{r_3}\right)+ {{\rm{e}}^{ - c\left(r_3^2 - r_1^2\right)} }\cos \left(2 c{r_3}{r_1}\right)$
    $ \Delta + {k^2} $$\dfrac{1}{ {2{\text{π } } } }{{\rm{J}}_0}(kr)$$\dfrac{ {\sin (kr)} }{ {4{\text{π} }r} }$
    $ \Delta - {k^2} $$\dfrac{1}{ {2{\text{π} } } }{{\rm{I}}_0}(kr)$$\dfrac{ {\sinh (kr)} }{ {4{\text{π} }r} }$
    $D\Delta + {\boldsymbol{v} } \cdot \nabla - {k^2}$$\dfrac{1}{ {2{\text{π } } } }{ {\rm{I} }_0}(\mu r){{\rm{e}}^{ - \tfrac{ { {\boldsymbol{v} } \cdot {\boldsymbol{r} } } }{ {2 D} } } }$$\dfrac{ {\sinh (\mu r)} }{ {4{\text{π} }r} }{{\rm{e}}^{ - \tfrac{ { {\boldsymbol{v} } \cdot {\boldsymbol{r} } } }{ {2 D} } } }$
    $ {\Delta ^2} $${r^2}{{\rm{e}}^{ - c\left(r_1^2 - r_2^2\right)} }\cos (2 c{r_1}{r_2})$${r^2}\left[ { { {\rm{e} }^{ - c(r_1^2 - r_2^2)} }\cos (2 c{r_1}{r_2})} \right. + { {\rm{e} }^{ - c\left(r_2^2 - r_3^2\right)} }\cos (2 c{r_2}{r_3}) + \left. { { {\rm{e} }^{ - c\left(r_3^2 - r_1^2\right)} }\cos (2 c{r_3}{r_1})} \right]$
    下载: 导出CSV

    表  4  常见微分方程算子的T完备函数$ {G_T} $[13]

    Table  4.   T-complete functions $ {G_T} $ of common-used differential equation operators[13]

    $ \Re $2D3D
    $ \Delta $$ 1 $${\rm{P}}_v^0\left( {\cos \varphi } \right)$
    $ {\rho ^m}\cos \left( {m\theta } \right) $${\rho ^m}{\rm{P}}_v^m\left( {\cos \varphi } \right)\cos \left( {m\theta } \right)$
    $ {\rho ^m}\sin \left( {m\theta } \right) $${\rho ^m}{\rm{P}}_v^m\left( {\cos \varphi } \right)\sin \left( {m\theta } \right)$
    $ \Delta + {k^2} $${{\rm{J}}_0}\left( {k\rho } \right)$${{\rm{J}}_0}\left( {k\rho } \right){\rm{P}}_v^0\left( {\cos \varphi } \right)$
    ${{\rm{J}}_m}\left( {k\rho } \right)\sin \left( {m\theta } \right)$${{\rm{J}}_m}\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\cos \left( {m\theta } \right)$
    ${{\rm{J}}_m}\left( {k\rho } \right)\sin \left( {m\theta } \right)$${{\rm{J}}_m}\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\sin \left( {m\theta } \right)$
    $ \Delta - {k^2} $${{\rm{I}}_0}\left( {k\rho } \right)$${{\rm{I}}_0}\left( {k\rho } \right){\rm{P}}_v^0\left( {\cos \varphi } \right)$
    ${{\rm{I}}_m}\left( {k\rho } \right)\cos \left( {m\theta } \right)$${{\rm{I}}_m}\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\cos \left( {m\theta } \right)$
    ${{\rm{I}}_m}\left( {k\rho } \right)\sin \left( {m\theta } \right) \\$${{\rm{I}}_m}\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\sin \left( {m\theta } \right)$
    $ {\Delta ^2} $$ {\rho ^2} $${\rho ^2}{\rm{P}}_v^0\left( {\cos \varphi } \right)$
    $ {\rho ^{m{\text{ + }}2}}\cos \left( {m\theta } \right) $${\rho ^{m{\text{ + } }2} }{\rm{P}}_v^m\left( {\cos \varphi } \right)\cos \left( {m\theta } \right)$
    $ {\rho ^{m{\text{ + }}2}}\sin \left( {m\theta } \right) $${\rho ^{m{\text{ + } }2} }{\rm{P}}_v^m\left( {\cos \varphi } \right)\sin \left( {m\theta } \right)$
    下载: 导出CSV

    表  5  常见高阶微分方程算子的基本解$ G_F^n $[12]

    Table  5.   Fundamental solutions $ G_F^n $ of common-used high-order differential equation operators[12]

    $ {\Re ^n} $2D3D
    $ {\Delta ^{n{\text{ + }}1}} $$\dfrac{ { {r^{2 n} } } }{ { { {2\text{π} } } } }\left( { {C_n}\ln r - {B_n} } \right)$$\dfrac{1}{ {\left( {2 n} \right)!} }\dfrac{ { {r^{2 n - 1} } } }{ { { {4\text{π} } } } }$
    $ {\left( {\Delta + {k^2}} \right)^{n{\text{ + }}1}} $${A_n}{(kr)^{n + 1 - dim /2} }{\text{i} }{\rm{H} }_{n - 1 + dim /2}^{\left( 1 \right)}\left( {kr} \right)$
    $ {\left( {\Delta - {k^2}} \right)^{n{\text{ + }}1}} $${A_n}{(kr)^{n + 1 - dim /2} }{ {\rm{K} }_{n - 1 + dim /2} }\left( {kr} \right)$
    ${\left( {D\Delta + {\boldsymbol{v} } \cdot \nabla - {k^2} } \right)^{n{\text{ + } }1} }$${A_n}{(\mu r)^{n + 1 - dim /2} }{ {\rm{K} }_{n - 1 + dim /2} }\left( {\mu r} \right){ {\rm{e} }^{ - \tfrac{ { {\boldsymbol{v} } \cdot r} }{ {2 D} } } }$
    下载: 导出CSV

    表  6  常见高阶微分方程算子的调和函数$ G_H^n $和径向Trefftz函数$ G_{RT}^n $[12]

    Table  6.   Harmonic functions $ G_H^n $ and radial Trefftz functions $ G_{RT}^n $ of common-used high-order differential equation operators[12]

    $ \Re $2D3D
    $ {\Delta ^{n{\text{ + }}1}} $${r^{2 n} }{{\rm{e}}^{ - c\left(r_1^2 - r_2^2\right)} }\cos (2 c{r_1}{r_2})$$\begin{gathered}{r^{2 n} }\left[ { { {\rm{e} }^{ - c(r_1^2 - r_2^2)} }\cos (2 c{r_1}{r_2})} \right. + \\ { {\rm{e} }^{ - c(r_2^2 - r_3^2)} }\cos (2 c{r_2}{r_3}) \left. { + { {\rm{e} }^{ - c(r_3^2 - r_1^2)} }\cos (2 c{r_3}{r_1})} \right]\end{gathered}$
    $ {\left( {\Delta + {k^2}} \right)^{n{\text{ + }}1}} $${A_n}{(kr)^{n + 1 - dim /2} }{ {\rm{J} }_{n - 1 + dim /2} }\left( {kr} \right)$
    $ {\left( {\Delta - {k^2}} \right)^{n{\text{ + }}1}} $${A_n}{(kr)^{n + 1 - dim /2} }{ {\rm{I} }_{n - 1 + dim /2} }\left( {kr} \right)$
    ${\left( D\Delta + {\boldsymbol{v} } \cdot \nabla - {k^2} \right)^{n{\text{ + } }1} }$${A_n}{(\mu r)^{n + 1 - dim /2} }{ {\rm{I} }_{n - 1 + dim /2} }\left( {\mu r} \right){ {\rm{e} }^{ - \frac{ { {\boldsymbol{v} } \cdot r} }{ {2 D} } } }$
    下载: 导出CSV

    表  7  常见高阶微分方程算子的T完备函数$ G_T^n $[23]

    Table  7.   T-complete functions $ G_{RT}^n $ of common-used high-order differential equation operators[23]

    $ \Re $2D3D
    $ {\Delta ^{n{\text{ + }}1}} $$ {\rho ^{2 n}} $${\rho ^{2 n} }{\rm{P}}_v^0\left( {\cos \varphi } \right)$
    $ {\rho ^{m{\text{ + }}2 n}}\cos \left( {m\theta } \right) $${\rho ^{m{\text{ + } }2 n} }{\rm{P}}_v^m\left( {\cos \varphi } \right)\cos \left( {m\theta } \right)$
    $ {\rho ^{m{\text{ + }}2 n}}\sin \left( {m\theta } \right) $${\rho ^{m{\text{ + } }2 n} }{\rm{P}}_v^m\left( {\cos \varphi } \right)\sin \left( {m\theta } \right)$
    $ {\left( {\Delta + {k^2}} \right)^{n{\text{ + }}1}} $${D_n}{{\rm{J}}_n}\left( {k\rho } \right)$${D_n}{{\rm{J}}_n}\left( {k\rho } \right){\rm{P}}_v^0\left( {\cos \varphi } \right)$
    ${D_n}{{\rm{J}}_{m + n} }\left( {k\rho } \right)\cos \left( {m\theta } \right)$${D_n}{{\rm{J}}_{m + n} }\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\cos \left( {m\theta } \right)$
    ${D_n}{{\rm{J}}_{m + n} }\left( {k\rho } \right)\sin \left( {m\theta } \right)$${D_n}{{\rm{J}}_{m + n} }\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\sin \left( {m\theta } \right)$
    $ {\left( {\Delta - {k^2}} \right)^{n{\text{ + }}1}} $${D_n}{{\rm{I}}_n}\left( {k\rho } \right)$${D_n}{{\rm{I}}_n}\left( {k\rho } \right){\rm{P}}_v^0\left( {\cos \varphi } \right)$
    ${D_n}{{\rm{I}}_{m + n} }\left( {k\rho } \right)\cos \left( {m\theta } \right)$${D_n}{{\rm{I}}_{m + n} }\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\cos \left( {m\theta } \right)$
    ${D_n}{{\rm{I}}_{m + n} }\left( {k\rho } \right)\sin \left( {m\theta } \right)$${D_n}{{\rm{I}}_{m + n} }\left( {k\rho } \right){\rm{P}}_v^m\left( {\cos \varphi } \right)\sin \left( {m\theta } \right)$
    下载: 导出CSV

    表  8  时间依赖微分方程算子的基本解$ G_F^{} $

    Table  8.   Fundamental solutions $ G_F^{} $ of time-dependent differential equation operators

    $ {{{\partial ^m}} \mathord{\left/ {\vphantom {{{\partial ^m}} {\partial {t^m}}}} \right. } {\partial {t^m}}} - \Re $2D3D
    $\dfrac{\partial }{ {\partial t} } - k\Delta$$\dfrac{ {\varTheta (t - \tau ){ {\rm{e} }^{ {r^2}/[4 k(t - \tau )]} } } }{ {4\text{π} k(t - \tau )} }$$\dfrac{ {\varTheta (t - \tau ){ {\rm{e} }^{ {r^2}/[4 k(t - \tau )]} } } }{ { { {\left[ {4\text{π} k(t - \tau )} \right]}^{3/2} } } }$
    $\dfrac{ { {\partial ^2} } }{ {\partial {t^2} } } - {c_1}\Delta$$\dfrac{ { { {\varTheta } }\left( {t - {r \mathord{\left/ {\vphantom {r { {c_1} } } } \right. } { {c_1} } } } \right)} }{ {2\text{π} {c_1}\sqrt {c_1^2{t^2} - {r^2} } } }$$\dfrac{ { { {\varTheta } }\left( {t - {r \mathord{\left/ {\vphantom {r { {c_1} } } } \right. } { {c_1} } } } \right)} }{ {4\text{π} r} }$
    下载: 导出CSV

    表  9  时间依赖微分方程算子的径向Trefftz函数$ G_{RT}^{} $

    Table  9.   Radial Trefftz functions $ G_{RT}^{} $ of time-dependent differential equation operators

    $ {{{\partial ^m}} \mathord{\left/ {\vphantom {{{\partial ^m}} {\partial {t^m}}}} \right. } {\partial {t^m}}} - \Re $2D3D
    $\dfrac{\partial }{ {\partial t} } - k\Delta$${ {\rm{e} }^{ - k(t - \tau )} }{{\rm{J}}_0}(r)$${{\rm{e}}^{ - k(t - \tau )} }\frac{ {\sin (r)} }{r}$
    $\dfrac{ { {\partial ^2} } }{ {\partial {t^2} } } - {c_1}\Delta$$\begin{gathered}\cos \left[ { {c_1}\left( {t - \tau } \right)} \right]{{\rm{J}}_0}(r) + \\ \sin \left[ { {c_1}\left( {t - \tau } \right)} \right]{{\rm{J}}_0}(r) \end{gathered}$$\begin{gathered}\frac{ {\cos \left[ { {c_1}\left( {t - \tau } \right)} \right]\sin \left( r \right)} }{r} +\\ \frac{ {\sin \left[ { {c_1}\left( {t - \tau } \right)} \right]\sin \left( r \right)} }{ { {c_1}r} }\end{gathered}$
    下载: 导出CSV

    表  10  物理信息依赖核函数配点法求解多个时刻不同尺寸比情况下的计算结果(Merr)

    Table  10.   Numerical results (Merr) obtained by using PIKF collocation method at varied time instants under different SRs

    t/sSR = 20SR = 60SR = 100
    0.41.19×10−71.19×10−73.10×10−5
    22.35×10−72.35×10−72.35×10−7
    101.32×10−61.32×10−61.32×10−6
    下载: 导出CSV

    表  11  物理信息依赖核函数配点法采用可测边界上含5%人工噪音数据反演得到的结果

    Table  11.   Numerical results obtained by using PIKF collocation method with different boundary measurement points on the accessible boundary under 5% noise level

    NTCond/1019Rerr(u)/%Rerr(q)/%kSVD
    757.066.509.2942
    1008.645.928.3154
    1255.014.776.4842
    下载: 导出CSV
  • [1] Zhang WW, Bernd RN. Artificial intelligence in fluid mechanics. Acta Mechanica Sinica, 2021, 37(12): 1715-1717
    [2] 张雄, 刘岩. 无网格法. 北京: 清华大学出版社, 2004

    Zhang Xiong, Liu Yan. Meshless Methods. Beijing: Tsinghua University Press, 2004 (in Chinese)
    [3] 樊礼恒, 王东东, 刘宇翔等. 节点梯度光滑有限元配点法. 力学学报, 2021, 53(2): 467-481 (Fan Liheng, Wang Dongdong, Liu Yuxiang, et al. A finite element collocation method with smoothed nodal gradients. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481 (in Chinese)
    [4] 王莉华, 李溢铭, 褚福运. 基于分区径向基函数配点法的大变形分析. 力学学报, 2019, 51(3): 743-753 (Wang Lihua, Li Yiming, Chu Fuyun. Finite subdomain radial basis collocation method for large deformation analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 743-753 (in Chinese)
    [5] Guo H, Zhuang X, Chen P, et al. Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis. Engineering with Computers, 2022, doi: 10.1007/s00366-022-01633-6
    [6] 陈增涛, 王发杰, 王超. 广义有限差分法在含阻抗边界空腔声学分析中的应用. 力学学报, 2021, 53(4): 1183-1195 (Chen Zengtao, Wang Fajie, Wang Chao. Application of generalized finite difference method in acoustic analysis of cavity with impedance boundary. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1183-1195 (in Chinese) doi: 10.6052/0459-1879-20-311
    [7] 李煜冬, 傅卓佳, 汤卓超. 功能梯度碳纳米管增强复合材料板弯曲和模态的广义有限差分法. 力学学报, 2022, 54(2): 414-424 (Li Yudong, Fu Zhuojia, Tang Zhuochao. Generalized finite difference method for bending and modal analysis of functionally graded carbon nanotube-reinforced composite plates. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 414-424 (in Chinese)
    [8] Ren HL, Zhuang XY, Rabczuk T. A nonlocal operator method for solving partial differential equations. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112621 doi: 10.1016/j.cma.2019.112621
    [9] Wang LH, Qian ZH. A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113303 doi: 10.1016/j.cma.2020.113303
    [10] 王莉华, 阮剑武. 配点型无网格法理论和研究进展. 力学季刊, 2021, 42(4): 613-632 (Wang Lihua, Ruan Jianwu. Theory and research progress of the collocation-type meshfree methods. Chinese Quarterly of Mechanics, 2021, 42(4): 613-632 (in Chinese) doi: 10.15959/j.cnki.0254-0053.2021.04.001
    [11] Hatami M. Weighted Residual Methods: Principles, Modifications and Applications. Academic Press, 2017
    [12] 陈文, 傅卓佳, 魏星. 科学与工程计算中的径向基函数方法. 北京: 科学出版社, 2014

    Chen Wen, Fu Zhuojia, Wei Xing. Radial Basis Function Methods in Scientific and Engineering Computing. Beijing: Science Press, 2014 (in Chinese))
    [13] Li ZC, Lu TT, Hu HY, et al. Trefftz and Collocation Methods. WIT Press, 2008
    [14] Cheng AHD, Hong Y. An overview of the method of fundamental solutions—Solvability, uniqueness, convergence, and stability. Engineering Analysis with Boundary Elements, 2020, 120: 118-152 doi: 10.1016/j.enganabound.2020.08.013
    [15] Young DL, Chen KH, Lee CW. Novel meshless method for solving the potential problems with arbitrary domain. Journal of Computational Physics, 2005, 209(1): 290-321 doi: 10.1016/j.jcp.2005.03.007
    [16] Šarler B. Solution of potential flow problems by the modified method of fundamental solutions: formulations with the single layer and the double layer fundamental solutions. Engineering Analysis with Boundary Elements, 2009, 33(12): 1374-1382 doi: 10.1016/j.enganabound.2009.06.008
    [17] Chen W, Fu Z, Wei X. Potential problems by singular boundary method satisfying moment condition. Computer Modeling in Engineering and Sciences (CMES) , 2009, 54(1): 65-86
    [18] Liu YJ. A new boundary meshfree method with distributed sources. Engineering Analysis with Boundary Elements, 2010, 34(11): 914-919 doi: 10.1016/j.enganabound.2010.04.008
    [19] Takhteyev V, Brebbia CA. Analytical integrations in boundary elements. Engineering Analysis with Boundary Elements, 1990, 7(2): 95-100 doi: 10.1016/0955-7997(90)90027-7
    [20] Partridge PW, Brebbia CA. Dual Reciprocity Boundary Element Method. Springer Science & Business Media, 2012
    [21] Gao XW. A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity. International Journal for Numerical Methods in Engineering, 2006, 66(9): 1411-1431 doi: 10.1002/nme.1602
    [22] Nowak AJ, Neves AC. The Multiple Reciprocity Boundary Element Method. Southampton: Computational Mechanics Publication, 1994
    [23] Chen W, Fu ZJ, Qin QH. Boundary particle method with high-order Trefftz functions. Computers, Materials & Continua (CMC) , 2009, 13(3): 201-217
    [24] Fu Z, Tang Z, Xi Q, et al. Localized collocation schemes and their applications. Acta Mechanica Sinica, 2022, 38(7): 422167 doi: 10.1007/s10409-022-22167-x
    [25] Benito JJ, Urena F, Gavete L. Influence of several factors in the generalized finite difference method. Applied Mathematical Modelling, 2001, 25(12): 1039-1053 doi: 10.1016/S0307-904X(01)00029-4
    [26] Guo L, Chen T, Gao XW. Transient meshless boundary element method for prediction of chloride diffusion in concrete with time dependent nonlinear coefficients. Engineering Analysis with Boundary Elements, 2012, 36(2): 104-111 doi: 10.1016/j.enganabound.2011.08.005
    [27] Fu ZJ, Yang LW, Xi Q, et al. A boundary collocation method for anomalous heat conduction analysis in functionally graded materials. Computers & Mathematics with Applications, 2021, 88: 91-109
    [28] Qiu L, Wang F, Lin J, et al. A novel combined space-time algorithm for transient heat conduction problems with heat sources in complex geometry. Computers & Structures, 2021, 247: 106495
    [29] 陈文. 复杂科学与工程问题仿真的隐式微积分建模. 计算机辅助工程, 2014, 23(5): 1-6 (Chen Wen. Implicit calculus modeling for simulation of complex scientific and engineering problems. Computer Aided Engineering, 2014, 23(5): 1-6 (in Chinese) doi: 10.13340/j.cae.2014.05.001
    [30] Liang Y, Yu Y, Magin RL. Computation of the inverse Mittag–Leffler function and its application to modeling ultraslow dynamics. Fractional Calculus and Applied Analysis, 2022, 25(2): 439-452 doi: 10.1007/s13540-022-00020-8
    [31] Hansen PC. The truncated SVD as a method for regularization. BIT Numerical Mathematics, 1987, 27(4): 534-553 doi: 10.1007/BF01937276
    [32] Ohyama T, Beji S, Nadaoka K, et al. Experimental verification of numerical model for nonlinear wave evolutions. Journal of Waterway, Port, Coastal and Ocean Engineering, 1994, 120(6): 637-644 doi: 10.1061/(ASCE)0733-950X(1994)120:6(637)
    [33] Ma J, Chen W, Lin J. Crack analysis by using the enriched singular boundary method. Engineering Analysis with Boundary Elements, 2016, 72: 55-64 doi: 10.1016/j.enganabound.2016.08.004
  • 加载中
图(11) / 表(11)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  98
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 录用日期:  2022-11-16
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回