EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小管径管翅式换热器气压胀接成形机理研究

郑智跃 蒋占四 丁泽良 杜王芳 李凯 陈雪

郑智跃, 蒋占四, 丁泽良, 杜王芳, 李凯, 陈雪. 小管径管翅式换热器气压胀接成形机理研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-482
引用本文: 郑智跃, 蒋占四, 丁泽良, 杜王芳, 李凯, 陈雪. 小管径管翅式换热器气压胀接成形机理研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-482
Zheng Zhiyue, Jiang Zhansi, Ding Zeliang, Du Wangfang, Li Kai, Chen Xue. Investigation on pneumatic expansion forming mechanism of small fin-tube heat exchanger. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-482
Citation: Zheng Zhiyue, Jiang Zhansi, Ding Zeliang, Du Wangfang, Li Kai, Chen Xue. Investigation on pneumatic expansion forming mechanism of small fin-tube heat exchanger. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-482

小管径管翅式换热器气压胀接成形机理研究

doi: 10.6052/0459-1879-22-482
基金项目: 国家自然科学基金项目(12162011)、广西科技厅中央引导地方专项(桂科ZY20198017)、第七届青年人才托举工程项目(2021QNRC001)、珠海市科技局产学研项目(ZH22017001210104PWC)、珠海市社会发展领域科技计划项目(ZH22036201210146PWC)资助
详细信息
    作者简介:

    陈雪, 副教授, 主要研究方向: 多相流界面现象与传热传质. Email: chenxue@guet.edu.cn

  • 中图分类号: TH49;TH131

INVESTIGATION ON PNEUMATIC EXPANSION FORMING MECHANISM OF SMALL FIN-TUBE HEAT EXCHANGER

  • 摘要: 管翅式换热器是制冷行业中最常用的换热器形式, 其换热管的胀接性能决定了换热器的传热性能. 本文提出了管翅式换热器的三维流−固耦合模型, 采用单向流固耦合瞬态数值模拟方法, 对小管径管翅式换热器的流体和固体域的流动和变形特征开展了数值研究. 计算结果表明: 根据换热管和翅片的胀接成形要求和胀后管径要求, 气压胀接压力的合理范围为P = 12.5 MPa, 与理论公式推导值一致. 根据管翅应力随时间变化的规律可知, 换热管接头处应力远大于其屈服极限66 MPa, 翅片接头处应力刚好略大于其屈服极限132 MPa, 满足胀接成形要求. 胀后的换热管直径随着压力的增加其管径增大, 换热管的径向位移在水平方向较小, 垂直方向较大, 其最大和最小位移差约为0.03 mm. 探究了管翅间残余接触压力随胀接压力的变化, 残余接触压力随胀接压力的变化可分为三个阶段. 结果表明当胀接压力使得翅片内孔发生屈服后, 继续增大胀接压力会导致胀接不完全. 最后研究了保压时间的影响, 结果表明保压时间的增加对胀接效果并没有明显影响. 相关结果可为工程实际中小管径管翅式换热器气压胀接工艺提供理论指导.

     

  • 图  1  气压胀接成形原理图

    Figure  1.  Schematic diagram of pneumatic expansion forming

    图  2  换热器的数值计算模型

    Figure  2.  Numerical model of fin-tube heat exchanger

    图  3  流体与固体域网格划分

    Figure  3.  Meshing of fluid and solid domains

    图  4  胀接压力8 ~ 8.75 MPa下胀后平均管径的数值结果与文献实验结果比较

    Figure  4.  Comparison of numerical simulations and experimental results of average tube diameter under expansion pressures from 8 to 8.75 MPa

    图  5  不同胀接气压下六个管翅接头的胀后平均管径

    Figure  5.  Average tube diameter of the six fin-tube joints under different pressures

    图  6  P = 12.5 MPa时, 不同管翅接头处换热管应力随时间的变化规律. 云图显示t = 15 s时, 换热管的应力分布

    Figure  6.  Variations of tube stresses with time at different fin-tube joints under P = 12.5 MPa. The colormap shows the stress distribution of heat exchange tube at t = 15 s

    图  7  P = 12.5 MPa时, 不同管翅接头处翅片的应力随时间的变化规律. 云图显示t = 15 s时, A1-A2截面翅片的应力分布

    Figure  7.  Variations of fin stresses with time at different fin-tube joints under P = 12.5 MPa. The colormap shows the stress distribution of heat exchange fin of A1-A2 cross-section at t = 15 s

    图  8  换热管A1截面在不同胀接气压下沿圆周方向的胀后径向位移

    Figure  8.  Radial displacement of heat exchanger tube at cross-section of A1 along circumferential direction under different pressures

    图  9  不同胀接压力下不同换热管接头位置的胀后平均管径

    Figure  9.  Average tube diameter of each heat exchanger tube joints under different pressures

    图  10  残余接触压力随胀接压力的变化

    Figure  10.  Variation of the residual contact pressure with different expansion pressures

    图  11  换热管A1截面在不同保压时间下的胀后径向位移

    Figure  11.  Radial displacement of heat exchanger tube at cross-section of A1 under different holding time

    图  12  不同保压时间下A1截面的换热管应力和残余接触压力

    Figure  12.  Variations of tube stresses and residual contact pressure with different holding times at cross-section of A1 under P = 12 MPa

    表  1  换热器的力学性能参数

    Table  1.   Mechanical properties of heat exchangers

    PartsDensity
    ρ/kg·m−3
    Elastic modulus
    E/GPa
    Poisson's ratio
    μ
    Yield strength
    σ/MPa
    Fin2780680.33132
    Tube89161270.3366
    下载: 导出CSV

    表  2  网格无关性分析

    Table  2.   Grid independent analysis

    Minimum unit size/mGrid number
    Radial displacement/mmRelative error/%
    6.27 × 10−51127530.10426.76%
    4.04 × 10−51596650.12511.97%
    3.45 × 10−51888260.1410.7%
    2.30 × 10−52898560.142
    下载: 导出CSV

    表  3  区域无关性分析

    Table  3.   Regional independent analysis

    Number of finsA1B1C1Average diameter/mmRelative error/%
    15.4115.8166.0545.7610.05%
    35.2755.1595.2455.2260.15%
    55.2815.1655.2565.234
    下载: 导出CSV
  • [1] 蒋祥荣, 李凯, 李大永等. 含支撑板结构的管-翅式换热器胀接工艺仿真. 塑性工程学报, 2015, 22(4): 93-98 (Jiang Xiangrong, Li Kai, Li Dayong, et al. Finite element analysis of expand-joint forming of fin-tube heat exchanger with support planes. Journal of Plasticity Engineering, 2015, 22(4): 93-98 (in Chinese)
    [2] 王相兵, 张响, 陈辉等. 胀接成形工艺对管翅式换热器结构性能的影响. 塑性工程学报, 2016, 23(4): 61-68 (Wang Xiangbing, Zhang Xiang, Chen Hui, et al. Effects of expand joint forming on structure performance of fin-tube heat exchanger. Journal of Plasticity Engineering, 2016, 23(4): 61-68 (in Chinese)
    [3] Akisanya AR, Khan FU, Deans WF, et al. Cold hydraulic expansion of oil well tubulars. International Journal of Pressure Vessels and Piping, 2011, 88(11-12): 465-472 doi: 10.1016/j.ijpvp.2011.08.003
    [4] 陈景爱, 李东涛, 袁耀刚等. 管壳式换热器机械胀接可靠性评价方法研究. 日用电器, 2022, 65(1): 84-88 (Chen Jingai, Li Dongtao, Yuan Yaogang et al. Study on reliability evaluation method for mechanical expansion connection of shell and tube heat exchanger. Electrical Appliances, 2022, 65(1): 84-88 (in Chinese) doi: 10.3969/j.issn.1673-6079.2022.01.031
    [5] Han HM, Yang LF, Jiang JY, et al. Experimental investigations of expansion strength of hydraulic expansion joints interconnecting tube and fins heat exchanger. Metals, 2022, 12(4): 641 doi: 10.3390/met12040641
    [6] 王立辉, 李伟. 管子管板机械胀接工艺改进. 压力容器, 2019, 36(10): 67-70

    Wang Lihui, Li Wei. Improvement of tube-to-tubesheet mechanical expansion process. Pressure Vessel, 2019, 36(10): 67-70. (in Chinese)
    [7] 朱波. 小管径φ5管翅式换热器穿片、胀管、焊接工艺难题及解决方法. 家电科技, 2017, 37(11): 86-88 (Zhu Bo. The problem and solution about the craft of wear piece, expanding tube and welding on large fin heat exchanger inφ5 heat exchanger. Journal of Appliance Science and Technology, 2017, 37(11): 86-88 (in Chinese) doi: 10.3969/j.issn.1672-0172.2017.11.026
    [8] 刁兵兵, 周骥平, 曹进等. 液压胀接技术在管翅式油冷却器生产中的应用研究. 机械设计与制造工程, 2016, 45(8): 91-94

    Diao Bingbing, Zhou Jiping, Cao Jin, et al. Application research on the hydraulic expansion technology in the production of tube fin oil cooler. Machine Design and Manufacturing Engineering, 2016, 45(8): 91-94. (in Chinese)
    [9] 刘雪涛, 宋忠义, 杨庆勇等. 管翅式换热器气压胀接铜管与密封圈拉脱力研究. 机床与液压, 2022, 50(17): 71-76 (Liu Xuetao, Song Zhongyi, Yang Qingyong, et al. Research on pull-off force of airexpanded copper tube and sealing ring in tube-fin heat exchanger. Machine Tool &Hydraulics, 2022, 50(17): 71-76 (in Chinese)
    [10] 杨标. 管壳式热交换器机械胀接工艺设计. 制冷与空调, 2021, 21(3): 46-48 (Yang Biao. Design of mechanical expansion process for shell and tube heat exchanger. Refrigeration and Air-Conditioning, 2021, 21(3): 46-48 (in Chinese) doi: 10.3969/j.issn.1009-8402.2021.03.010
    [11] 贾甲, 李炅, 钟志锋等. 管翅式换热器胀接参数对换热器性能的影响. 低温与超导, 2018, 46(3): 64-68 (Jia Jia, Li Jiong, Zhong Zhife-ng, et al. Effect of expanding parameter on the performance of fin and tube heat exchanger. Cryogenics & Superconductivity, 2018, 46(3): 64-68 (in Chinese) doi: 10.16711/j.1001-7100.2018.03.014
    [12] 夏琴香, 李志伟, 龙晓斌等. 空调翅片胀接过程翘曲变形及相关参数研究. 华南理工大学学报(自然科学版), 2016, 44(2): 33-39 (Xia Qinxiang, Li Zhiwei, Long Xiaobin, et al. Investigation into warpage deformation and corresponding parameters in expanding-jointing process of air conditioner fin. Journal of South China University of Technology(Natural Science Edition), 2016, 44(2): 33-39 (in Chinese)
    [13] Krips H, Podhorsky M. Hydraulic expansion — a new procedure for fastening tubes. VGB Kraftswerkstech, 1976, 56(7): 456-464
    [14] Goodier JN, Sehoessow GJ. The holding power and hydraulic tightn-ess of expanded tube joints: analysis of the stress and deformation. Trans. ASME, 1943, 65(5): 489-496
    [15] 陈刚, 李伟, 王秀丽. 用于管板连接的液压胀管的研究与应用. 氯碱工业, 2001, 37(3): 40-45 (Chen Gang, Li Wei, Wang Xiuli. Study and application of hydraulic expansion tube for the joint of tubeplate. Chlor - Alkali Industry, 2001, 37(3): 40-45 (in Chinese) doi: 10.3969/j.issn.1008-133X.2001.03.016
    [16] 颜惠庚, 张炳生, 葛乐通等. 换热器的液压胀管研究(一) — 胀接压力的确定. 压力容器, 1996, 13(2): 126-130 (Yan Huigeng, Zhang Bingsheng, Ge Letong, et al. Researchon hydraulically expanding of heat exchangers(1) — determination of the expanding pressure. Pressure Vessel, 1996, 13(2): 126-130 (in Chinese)
    [17] 颜惠庚, 张炳生, 葛乐通等. 换热器的液压胀接研究(二) — 残余接触压力与摩擦系数. 压力容器, 1996, 13(2): 39-43 (Yan Huigeng, Zhang Bingsheng, Ge Letong et al. Research on hydraulically expanding of heat exchangers(2) — the residual contact pressure and friction coefficient. Pressure Vessel, 1996, 13(2): 39-43 (in Chinese)
    [18] 王海峰, 桑芝富. 幂强化材料的液压胀管残余接触压力理论解. 石油机械, 2007, 35(11): 24-28 (Wang Haifeng, Sang Zhifu. Theoretical solution of residual contact pressure for hydraulic expansion of power-reinforced materials. China Petroleum Machinery, 2007, 35(11): 24-28 (in Chinese) doi: 10.3969/j.issn.1001-4578.2007.11.007
    [19] Huang XP, Xie T. Modeling hydraulically expanded tube-to-tubesheet joint based on general stress-strain curves of tube and tubesheet materials. Journal of Pressure Vessel Technology, 2011, 133(3): 031205 doi: 10.1115/1.4002259
    [20] 洪瑛, 王学生, 陈琴珠等. 液压胀管理论计算中材料模型的双线性简化. 机械设计与研究, 2018, 34(1): 199-202 (Hong Ying, Wang Xuesheng, Chen qinzhu, et al. Bilinear simplification of material model in theoretical calculation of hydraulic expansion. Machine Design & Research, 2018, 34(1): 199-202 (in Chinese) doi: 10.13952/j.cnki.jofmdr.2018.0044
    [21] 段明德, 盛青志, 张壮雅等. 换热管与管板胀接顺序对换热器胀接质量的影响. 机械设计与制造, 2021, 59(9): 255-260 (Duan Mingd-e, Sheng Qingzhi, Zhang Zhuangya, et al. Influence of expansion order of heat exchanger tube and tube plate on expansion joint quality of heat exchanger. Machinery Design & Manufacture, 2021, 59(9): 255-260 (in Chinese) doi: 10.3969/j.issn.1001-3997.2021.09.057
    [22] Allam M, Bazergui A. Axial strength of tube-to-tubesheet joints: finite element and experimental evaluations. Journal of Pressure Vessel Technology, 2002, 124(1): 22 doi: 10.1115/1.1398555
    [23] 邹小清. 蒸汽发生器管子管板液压胀保压时间数值模拟. 压力容器, 2010, 27(9): 26-30 (Zou Xiaoqing. Numerical simulation of pre-ssure maintain of hydraulically expanded tube-to-tubesheet joints in steam generator. Pressure Vessel, 2010, 27(9): 26-30 (in Chinese) doi: 10.3969/j.issn.1001-4837.2010.09.006
    [24] Alaboodi AS. Finite element study of the hybrid expansion of tube-to-tubesheet joints. Thin-Walled Structures, 2019, 137: 347-352 doi: 10.1016/j.tws.2019.01.025
    [25] 张泉达, 郎利辉, 吴磊. 铜管与翅片气压胀接工艺研究. 压力容器, 2015, 32(9): 11-18 (Zhang Quanda, Lang Lihui, Wu Lei. Research on gas pressure expanding of copper pipe and radiator-fin. Pressure Vessel, 2015, 32(9): 11-18 (in Chinese) doi: 10.3969/j.issn.1001-4837.2015.09.002
    [26] 张鹏. 空调管翅式换热器成形工艺的仿真研究. [硕士论文]. 上海: 上海交通大学, 2008

    Zhang Peng. Research on simulation of air-conditioning fin-tube heat exchanger forming. [MA. Eng Thesis]. Shanghai: Shanghai Jiao Tong University, 2008. (in Chinese))
    [27] 韩俊杰. 液压胀接技术在空调换热管和翅片胀接上的应用. [硕士论文]. 桂林: 桂林电子科技大学, 2019

    Han Junjie. Application of hydraulic expansion technology in air conditioning heat exchange tube and fin exchange. [MA. Eng Thesis]. Guilin: Guilin University of Electronic Technology, 2019. (in Chinese))
    [28] 李贤章, 杨连发, 陈占斌等. 基于硬密封方式的空调换热器液压胀接实验装置的设计与开发. 机械设计与研究, 2021, 37(3): 191-197 (Li Xianzhang, Yang Lianfa, Chen Zhanbin, et al. Design and deve-lopment on hydraulic expansion device of air-conditioner’s heat exc-hanger based on hard-seal. Machine Design and Research, 2021, 37(3): 191-197 (in Chinese) doi: 10.13952/j.cnki.jofmdr.2021.0122
    [29] 姜靖宇, 杨连发, 李贤章等. 小管径换热管与翅片液压胀接试验装置的设计与开发. 机械设计与研, 2020, 36(03): 195-203 (Jiang Jingyu, Yang Lianfa, Li Xianzhang et al. Design and development on hydraulic expansion device of small diameter copper tube and fin in air heat exchangers. Machine Design and Research, 2020, 36(03): 195-203 (in Chinese)
    [30] 丁国良, 吴国明, 刘挺. 制冷空调换热器的研究进展(一) — 小管径翅片管换热器. 家电科技, 2019, 39(4): 40-45 (Ding Guoliang, Wu Guoming, Liu Ting. Development of heat exchanger for refrigeration and air-conditioning(1) — fin and tube heat exchangers using small d-iameter tubes. Journal of Appliance Science and Technology, 2019, 39(4): 40-45 (in Chinese)
    [31] Gu X, Wang G, Zhang QX, et al. Fluid-structure interaction analysis of heat exchanger with torsional flow in the shell side. Journal of Mechanical Science and Technology, 2022, 36(1): 479-489 doi: 10.1007/s12206-021-1245-1
    [32] Huang PW, Cao F, Rao WF. Numerical simulation and experimental verification of the front air intake system of heavy trucks based on fluid-solid coupling and discrete phase models. Alexandria Engineering Journal, 2022, 61(12): 11993-12003 doi: 10.1016/j.aej.2022.06.010
    [33] Yang KG, Gao DL. Numerical simulation of hydraulic fracturing process with consideration of fluid–solid interaction in shale rock. Journal of Natural Gas Science and Engineering, 2022, 102: 104580 doi: 10.1016/j.jngse.2022.104580
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-11-15

目录

    /

    返回文章
    返回