TOTAL LAGRANGIAN MATERIAL POINT METHOD FOR THE DYNAMIC ANALYSIS OF NEARLY INCOMPRESSIBLE SOFT MATERIALS
-
摘要: 物质点法(MPM)在模拟非线性动力问题时具有很好的效果, 其已被广泛应用于许多大变形动力问题的分析中. 然而传统的MPM在模拟不可压或近似不可压材料的动力学行为时会产生体积自锁, 极大地影响模拟精度和收敛性. 本文针对近似不可压软材料的大变形动力学行为, 提出一种混合格式的显式完全拉格朗日物质点法(TLMPM). 首先基于近似不可压软材料的体积部分应变能密度, 引入关于静水压力的方程; 之后将该方程与动量方程基于显式物质点法框架进行离散, 并采用完全拉格朗日格式消除物质点跨网格产生的误差, 提升大变形问题的模拟精度; 对位移和压强场采用不同阶次的B样条插值函数并通过引入针对体积变形的重映射技术改进了算法, 提升算法的准确性. 此外, 算法通过实施一种交错求解格式在每个时间步对位移场和压强场依次进行求解. 最后, 给出几个典型数值算例来验证本文所提出的混合格式TLMPM的有效性和准确性, 计算结果表明该方法可以有效处理体积自锁, 准确地模拟近似不可压软材料的大变形动力学行为.
-
关键词:
- 完全拉格朗日物质点法 /
- 软材料 /
- 体积自锁 /
- 大变形 /
- 显式动力学
Abstract: The material point method (MPM) shows good performance in modeling nonlinear dynamic problems and has been widely used to simulate various types of large deformation dynamic problems. However, the classical MPM may suffer from the volumetric locking when modeling the dynamic responses of the incompressible or nearly incompressible materials, which reduces the computational accuracy and affects the convergence behavior greatly. In this work, a displacement-pressure mixed total Lagrangian material point method (TLMPM) with explicit time integration is proposed for the large deformation dynamic behavior of nearly incompressible soft materials. In this method, an equation about the hydrostatic pressure is introduced based on the volumetric part of the strain energy density of nearly incompressible soft materials. Then the introduced equation as well as the momentum equation is discretized within the framework of the explicit MPM and the total Lagrangian formulation is implemented to overcome the cell-crossing noise, which increases the computational accuracy for the problems involving large deformation. Furthermore, the B-spline interpolation functions with different orders are applied for displacement and pressure fields respectively and the mixed TLMPM is improved to increase the accuracy by introducing a remapping technique for the volumetric deformation. In addition, the staggered solving scheme is adopted and the displacement and the pressure are required to be solved sequentially in a single time step. Finally, several typical numerical examples are simulated by the mixed TLMPM and the convergence and accuracy are analyzed. The results demonstrate that the proposed mixed TLMPM is able to deal with the volumetric locking effectively and simulate the dynamic behavior of nearly incompressible soft materials involving large deformation accurately. -
图 6 二维软梁的弯曲: 不同时刻的静水压力分布. (a)~(b) 标准格式线性插值; (c)~(d) 标准格式二次插值; (e)~(f) 线性−常数混合格式; (g)~(h) 二次−线性混合
Figure 6. Bending of 2D soft beam: hydrostatic distribution at different times. (a)~(b) Standard linear interpolation; (c)~(d) standard quadratic interpolation; (e)~(f) linear-constant mixed formulation and (g)~(h) quadratic-linear mixed formulation
图 7 三维柱体扭转: 构型及静水压力分布. (a) 几何模型; (b) t = 0.1 s, 标准TLMPM; (c) t = 0.3 s, 标准TLMPM; (d) t = 0.1 s, 混合 TLMPM; (e) t = 0.3 s, 混合 TLMPM
Figure 7. Twisting of a 3D column: configurations and distribution of hydrostatic pressure. (a) Geometry; (b) t = 0.1 s, standard TLMPM; (c) t = 0.3 s, standard TLMPM; (d) t = 0.1 s, mixed TLMPM and (e) t = 0.3 s, mixed TLMPM
-
[1] 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展. 力学学报, 2020, 52(5): 1221-1232 (Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1232 (in Chinese) doi: 10.6052/0459-1879-20-189 [2] 郭辉, 胡文军, 陶俊林. 泡沫橡胶材料的超弹性本构模型. 计算力学学报, 2013, 30(4): 575-579 (Guo Hui, Hu Wen-jun, Tao Jun-lin. The superelasticty constitutive model for foam rubber materials. Chinese Journal of Computational Mechanics, 2013, 30(4): 575-579 (in Chinese) doi: 10.7511/jslx201304021 [3] 肖锐, 向玉海, 钟旦明等. 考虑缠结效应的超弹性本构模型. 力学学报, 2021, 53(4): 1028-1037 (Xiao Rui, Xiang Yuhai, Zhong Danming, et al. Hyperelastic model with entanglement effect. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1028-1037 (in Chinese) doi: 10.6052/0459-1879-21-008 [4] Liu R, Li Y, Liu Z. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer. Mechanics of Time-Dependent Materials, 2019, 23(3): 249-266 [5] 朱忠猛, 杨卓然, 蒋晗. 软材料黏接结构界面破坏研究综述. 力学学报, 2021, 53(7): 1807-1828 (Zhu Zhongmeng, Yang Zhuoran, Jiang Han. Review of interfacial debonding behavior of adhesive structures with soft materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1807-1828 (in Chinese) doi: 10.6052/0459-1879-21-131 [6] 冯西桥, 曹艳平, 李博. 软材料表面失稳力学. 北京: 科学出版社, 2017Feng Xiqiao, Cao Yanping, Li Bo. Surface Instability Mechanics of Soft Materials. Beijing: Science Press, 2017 (in Chinese) [7] 董金平, 张志强. 基于横观各向同性超弹性理论的短纤维增强橡胶本构模型的建立与应用. 计算力学学报, 2016, 33(2): 231-237 (Dong Jinping, Zhang Zhiqiang. Establishment and application of short fiber reinforced rubber constitutive model based on transversely isotropic hyperelastic theory. Chinese Journal of Computational Mechanics, 2016, 33(2): 231-237 (in Chinese) [8] 黄春阳, 唐山, 彭向和. 超弹性薄膜与可压缩基底双层结构表面失稳分析. 力学学报, 2017, 49(4): 758-762 (Huang Chunyang, Tang Shan, Peng Xianghe. Study of surface instability about hyperelastic films on auxetic substrates under compression. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 758-762 (in Chinese) doi: 10.6052/0459-1879-17-161 [9] de Borst R, Crisfield MA, Remmers JC, et al. Non-Linear Finite Element Analysis of Solids and Structures. United Kingdom: John Wiley & Sons Ltd, 2012 [10] 郑晓静. 关于极端力学. 力学学报, 2019, 51(4): 1266-1272 (Zheng Xiaojing. Extreme mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266-1272 (in Chinese) doi: 10.6052/0459-1879-19-189 [11] Hu ZQ, Liu Y, Zhang HW, et al. Implicit material point method with convected particle domain interpolation for consolidation and dynamic analysis of saturated porous media with massive deformation. International Journal of Applied Mechanics, 2021, 13(2): 2150023 doi: 10.1142/S175882512150023X [12] Sulsky D, Chen Z, Schreyer HL. A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1-2): 179-196 doi: 10.1016/0045-7825(94)90112-0 [13] Sulsky D, Zhou SJ, Schreyer HL. Application of a particle-in-cell method to solid mechanics. Computer Physics Communications, 1995, 87(1-2): 236-252 doi: 10.1016/0010-4655(94)00170-7 [14] Pan XF, Xu AG, Zhang GC, et al. Generalized interpolation material point approach to high melting explosive with cavities under shock. Journal of Physics D-Applied Physics, 2008, 41(1): 015401 doi: 10.1088/0022-3727/41/1/015401 [15] Zhang ZJ, Qiu YS, Hu ZQ, et al. Explicit phase-field total Lagrangian material point method for the dynamic fracture of hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 2022, 398: 115234 doi: 10.1016/j.cma.2022.115234 [16] 孙玉进. 岩土大变形问题的物质点法研究. 北京: 清华大学, 2017(Sun Yujin. Research on Geotechnical Problems Involving Extremely Large Deformation Using The Material Point Method. Beijing: Tsinghua University, 2017 (in Chinese)) [17] 张雄, 廉艳平, 刘岩等. 物质点法. 北京: 清华大学出版社, 2013Zhang Xiong, Lian Yanping, Liu Yan, et al. Material Point Method. Beijing: Tsinghua University Press, 2013 (in Chinese) [18] Bardenhagen SG, Kober EM. The generalized interpolation material point method. Computer Modeling in Engineering & Sciences, 2004, 5(6): 477-495 [19] Sadeghirad A, Brannon RM, Burghardt J. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. International Journal for Numerical Methods in Engineering, 2011, 86(12): 1435-1456 doi: 10.1002/nme.3110 [20] Gan Y, Sun Z, Chen Z, et al. Enhancement of the material point method using B-spline basis functions. International Journal for Numerical Methods in Engineering, 2018, 113(3): 411-431 [21] de Vaucorbeil A, Nguyen VP, Hutchinson CR. A total-Lagrangian material point method for solid mechanics problems involving large deformations. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112783 doi: 10.1016/j.cma.2019.112783 [22] Zhang ZJ, Pan YX, Wang JH, et al. A total-Lagrangian material point method for coupled growth and massive deformation of incompressible soft materials. International Journal for Numerical Methods in Engineering, 2021, 122(21): 6180-6202 doi: 10.1002/nme.6787 [23] de Vaucorbeil A, Nguyen VP. Modelling contacts with a total Lagrangian material point method. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113503 [24] Kularathna S, Soga K. Implicit formulation of material point method for analysis of incompressible materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 673-686 doi: 10.1016/j.cma.2016.10.013 [25] Zhang F, Zhang X, Sze KY, et al. Incompressible material point method for free surface flow. Journal of Computational Physics, 2017, 330: 92-110 doi: 10.1016/j.jcp.2016.10.064 [26] Coombs WM, Charlton TJ, Cortis M, et al. Overcoming volumetric locking in material point methods. Computer Methods in Applied Mechanics and Engineering, 2018, 333: 1-21 [27] Iaconeta I, Larese A, Rossi R, et al. A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics. Computational Mechanics, 2019, 63(6): 1243-1260 doi: 10.1007/s00466-018-1647-9 [28] 李锡夔, 郭旭, 段庆林. 连续介质力学引论. 北京: 科学出版社, 2015Li Xikui, Guo Xu, Duan Qinglin. Introduction to Continuum Mechanics. Beijing: Science Press, 2015 (in Chinese) [29] Kakouris EG, Triantafyllou SP. Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112503 doi: 10.1016/j.cma.2019.06.014 [30] Kadapa C. Novel quadratic Bézier triangular and tetrahedral elements using existing mesh generators: Extension to nearly incompressible implicit and explicit elastodynamics in finite strains. International Journal for Numerical Methods in Engineering, 2019, 119(2): 75-104 doi: 10.1002/nme.6042 [31] Tian FC, Zeng J, Zhang MN, et al. Mixed displacement–pressure-phase field framework for finite strain fracture of nearly incompressible hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114933 doi: 10.1016/j.cma.2022.114933 [32] Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1987 [33] 王建华. 软物质溶胀行为分析的实体-壳元有限元法和实体元等几何法研究. [博士论文]. 大连: 大连理工大学, 2021Wang Jianhua. Study on solid-shell finite element method and solid element isogeometric analysis method for the swelling deformation of soft materials. [PhD Thesis]. Dalian: Dalian University of Technology, 2021 (in Chinese) [34] Telikicherla RM, Moutsanidis G. Treatment of near-incompressibility and volumetric locking in higher order material point methods. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 114985 doi: 10.1016/j.cma.2022.114985 -