INVESTIGATION OF STABILITY AND BIFURCATION CHARACTERISTICS OF WHEELSET NONLINEAR DYNAMIC MODEL
-
摘要: 为了探究轮对系统的横向失稳问题, 考虑了陀螺效应和一系悬挂阻尼的影响作用, 建立非线性轮轨接触关系的轮对动力学模型, 研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理. 通过稳定性判据获得了轮对系统失稳临界速度. 采用中心流形定理和规范型方法对轮对动力学模型进行化简, 得到与轮对系统分岔特性相同的一维复变量方程, 理论推导求得轮对系统的第一Lyapunov系数的表达式, 根据其符号即可判断轮对系统的Hopf分岔类型. 讨论了不同参数对轮对系统Hopf分岔临界速度的影响, 探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律. 利用数值模拟得到轮对系统的3种典型Hopf分岔图, 验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性. 结果表明, 轮对系统的临界速度随着等效锥度的增大而减小, 随着一系悬挂的纵向刚度和纵向阻尼的增大而增大, 随着纵向蠕滑系数的增大呈先增大后减小. 系统参数变化会引起轮对系统Hopf分岔类型发生改变, 即亚临界与超临界Hopf分岔相互迁移转化. 轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.Abstract: To explore the lateral instability of the wheelset system, the gyroscopic effect and the influence of the primary suspension damping are considered, a dynamic model of the wheelset system with a nonlinear wheel-rail contact relationship is established, and the hunting stability, Hopf bifurcation characteristics, and migration transformation mechanism are investigated. The hunting instability critical speed of the wheelset system is obtained through the stability criterion. The central manifold theorem is used to reduce the dimensions of the wheelset system. Then the reduced wheelset system is simplified using the normal form method to obtain a one-dimensional complex variable equation with the same bifurcation characteristics as the wheelset system. The expression of the first Lyapunov coefficient of the wheelset system is derived theoretically, and the Hopf bifurcation type of the wheelset system can be judged according to its sign. The influence of different parameters on the Hopf bifurcation critical speed of the wheelset system is discussed, and the distribution law of supercritical and subcritical Hopf bifurcation regions of the wheelset system in two-dimensional parameter space is explored. Three typical Hopf bifurcation diagrams of the wheelset system are obtained by numerical simulation, which verifies the correctness of the distribution law of the supercritical and subcritical Hopf bifurcation regions of the wheelset system. The results reveal that the critical speed of the wheelset system decreases with the increase of the equivalent taper, increases with the increase of the longitudinal stiffness and longitudinal damping of the primary suspension, and first increases and then decreases with the increase of the longitudinal creep coefficient. The change of system parameters will change the type of Hopf bifurcation of the wheelset system, that is, the subcritical and supercritical Hopf bifurcations migrate and transform each other. The distribution law of the Hopf bifurcation domain of the wheelset system in two-dimensional parameter space has a certain guiding significance for wheelset parameter matching and optimization design.
-
Key words:
- gyroscopic effect /
- hunting stability /
- center manifold theorem /
- limit cycle /
- Hopf bifurcation
-
表 A1 轮对系统参数
Table A1. The parameters of the wheelset system
Parameter Interpretation Value Unit $ m $ mass of the wheelset 1627 kg $ {I_z} $ yaw moment of inertia of wheelset 830 kg·m2 $ {I_y} $ spin moment of inertia of wheelset 100 kg·m2 $ W $ axle load of wheelset 11.22 t $ {r_0} $ centered wheel rolling radius 0.46 m $ l $ half of the swing arm 1.02 m $ a $ half of the lateral distance of rolling circle 0.7465 m $ {f_{11}} $ longitudinal creep coefficient 1.5 × 106 N $ {f_{22}} $ lateral creep coefficient 1.5 × 106 N $ {f_{23}} $ lateral spin creep force coefficient 1000 N $ {f_{33}} $ spin creep force coefficient 1000 N $ {k_y} $ primary lateral stiffness 1.0 MN·m−1 $ {k_x} $ primary longitudinal stiffness 1.0 MN·m−1 $ {c_y} $ primary lateral damping 1000 N·m·s−1 $ {c_x} $ primary longitudinal damping 1000 N·m·s−1 $ {\lambda _e} $ equivalent conicity of the wheelset 0.16 − $ {\delta _1} $ nonlinear wheel-rail contact control parameter −1.6 × 1011 − $ {\delta _2} $ nonlinear wheel-rail contact control parameter 1.6 × 1015 − -
[1] Luo GW, Shi YQ, Zhu XF, et al. Hunting patterns and bifurcation characteristics of a three-axle locomotive bogie system in the presence of the flange contact nonlinearity. International Journal of Mechanical Sciences, 2018, 136: 321-338 doi: 10.1016/j.ijmecsci.2017.12.022 [2] Pålsson BA, Nielsen JCO. Wheel-rail interaction and damage in switches and crossings. Vehicle System Dynamics, 2011, 50(1): 1-16 [3] Yan Y, Zeng J. Hopf bifurcation analysis of railway bogie. Nonlinear Dynamics, 2018, 92(1): 107-117 doi: 10.1007/s11071-017-3634-7 [4] True H. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way. Vehicle System Dynamics, 2013, 51(3): 443-459 doi: 10.1080/00423114.2012.738919 [5] Papangelo A, Putignano C, Hoffmann N. Self-excited vibrations due to viscoelastic interactions. Mechanical Systems and Signal Processing, 2020, 144: 106894 doi: 10.1016/j.ymssp.2020.106894 [6] Wagner UV. Nonlinear dynamic behaviour of a railway wheelset. Vehicle System Dynamics, 2009, 47(5): 627-640 doi: 10.1080/00423110802331575 [7] Pascal JP, Sany JR. Dynamics of an isolated railway wheelset with conformal wheel-rail interactions. Vehicle System Dynamics, 2019, 57(12): 1947-1969 doi: 10.1080/00423114.2018.1557704 [8] Ahmadian M, Yang S. Hopf bifurcation and hunting behavior in a rail wheelset with flange contact. Nonlinear Dynamics, 1998, 15(1): 15-30 doi: 10.1023/A:1008278713331 [9] Casanueva C, Alonso A, Eziolaza I, et al. Simple flexible wheelset model for low-frequency instability simulations. Journal of Rail and Rapid Transit, 2014, 228(2): 169-181 doi: 10.1177/0954409712468253 [10] True H, Asmund R. The dynamics of a railway freight wagon wheelset with dry friction damping. Vehicle System Dynamics, 2002, 38(2): 149-163 [11] 孙建锋, 池茂儒, 吴兴文等. 基于能量法的轮对蛇行运动稳定性. 交通运输工程学报, 2018, 18(2): 82-89 (Sun Jianfeng, Chi Maoru, Wu Xingwen, et al. Hunting motion stability of wheelset based on energy method. Journal of Traffic and Transportation Engineering, 2018, 18(2): 82-89 (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.02.009 [12] Yabuno H, Okamoto T, Aoshima N. Stabilization control for the hunting motion of a railway wheelset. Vehicle System Dynamics, 2001, 35(S1): 41-55 [13] Wu X, Chi M. Parameters study of Hopf bifurcation in railway vehicle system. Journal of Computational and Nonlinear Dynamics, 2015, 10 (3). [14] 史禾慕, 曾晓辉, 吴晗. 轮对非线性动力学系统蛇行运动的解析解. 力学学报, 2022, 54: 1-13 (Shi Hemu, Zeng Xiaohui, Wu Han. Analytical solution of the hunting motion of a wheelset nonlinear dynamical system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54: 1-13 (in Chinese) doi: 10.6052/0459-1879-22-377 [15] Wei L, Zeng J, Chi M, et al. Carbody elastic vibrations of highspeed vehicles caused by bogie hunting instability, Vehicle System Dynamics, 2017, 55(9): 1321-1342 [16] Qu S, Wang J, Zhang D, et al. Failure analysis on bogie frame with fatigue cracks caused by hunting instability, Engineering Failure Analysis, 128: 105584 [17] Sun J, Meli E, Cai W, et al. A signal analysis based hunting instability detection methodology for high-speed railway vehicles, Vehicle System Dynamics, 2021, 59(10): 1461-1483 [18] Zhang T, Dai H. Bifurcation analysis of high-speed railway wheel-set. Nonlinear Dynamics, 2016, 83(3): 1511-1528 doi: 10.1007/s11071-015-2425-2 [19] Guo J, Shi H, Luo R, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel-rail contact. Nonlinear Dynamics, 2021, 104(2): 989-1005 doi: 10.1007/s11071-021-06373-8 [20] Wei W, Yabuno H. Subcritical Hopf and saddle-node bifurcations in hunting motion caused by cubic and quintic nonlinearities: experimental identification of nonlinearities in a roller rig. Nonlinear Dynamics, 2019, 98(1): 657-670 doi: 10.1007/s11071-019-05220-1 [21] Cheng L, Wei X, Cao H. Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model. Nonlinear Dynamics, 2018, 93(4): 2415-2431 doi: 10.1007/s11071-018-4333-8 [22] Dong H, Zeng J, Wu L, et al. Analysis of the gyroscopic stability of the wheelset. Shock and Vibration, 2014, 2014: 1-7 [23] 武世江, 张继业, 隋皓等. 轮对系统的Hopf分岔研究. 力学学报, 2021, 53(9): 2569-2581 (Wu Shijiang, Zhang Jiye, Sui Hao. Hopf bifurcation study of wheelset system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2569-2581 (in Chinese) doi: 10.6052/0459-1879-21-321 [24] Kim P, Jung J, Seok J. A parametric dynamic study on hunting stability of full dual-bogie railway vehicle. International Journal of Precision Engineering and Manufacturing, 2011, 12(3): 505-519 doi: 10.1007/s12541-011-0064-1 [25] Dong H, Zeng J. Normal form method for large/small amplitude instability criterion with application to wheelset lateral stability. International Journal of Structural Stability and Dynamics, 2014, 14(3): 1350073 doi: 10.1142/S0219455413500739 [26] Ge P, Wei X, Liu J, et al. Bifurcation of a modified railway wheelset model with nonlinear equivalent conicity and wheel-rail force. Nonlinear Dynamics, 2020, 102(1): 79-100 doi: 10.1007/s11071-020-05588-5 [27] 白瑾瑜, 曾京, 石怀龙等. 抗蛇行减振器对高速列车稳定性的影响. 振动与冲击, 2020, 39(23): 78-83 (Bai Jinyu, Zeng Jing, Shi Huailong, et al. Effects of anti-hunting shock absorber on stability of high-speed train. Journal of Vibration and Shock, 2020, 39(23): 78-83 (in Chinese) doi: 10.13465/j.cnki.jvs.2020.23.012 [28] Knothe K, Bohm F. History of stability of railway and road vehicles, Vehicle System Dynamics, 1999, 31(5-6): 283-323 [29] Nath Y, Jayadev K, Influence of yaw stiffness on the nonlinear dynamics of railway wheelset, Communications in Nonlinear Science and Numerical Simulation, 2005, 10(2): 179-190 [30] 于曰伟, 周长城, 赵雷雷. 高速客车抗蛇行减振器阻尼匹配的解析研究. 机械工程学报, 2018, 54(2): 159-168 (Yu Yuewei, Zhou Changcheng, Zhao Leilei. Analytical research of yaw damper damping matching for high-speed train. Journal of Mechanical Engineering, 2018, 54(2): 159-168 (in Chinese) doi: 10.3901/JME.2018.02.159 [31] Yan Y, Zeng J, Huang C, et al. Bifurcation analysis of railway bogie with yaw damper. Archive of Applied Mechanics, 2019, 89(7): 1185-1199 doi: 10.1007/s00419-018-1475-6 [32] Yan Y, Zeng J, Mu J. Complex vibration analysis of railway vehicle with tread conicity variation. Nonlinear Dynamics, 2020, 100(1): 173-183 doi: 10.1007/s11071-020-05498-6 [33] Dhooge A, Govaerts W, Kuznetsov Y A, et al. New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems, 2008, 14(2): 147-175 doi: 10.1080/13873950701742754 -