EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MPS-FEM方法模拟弹性船体在规则波中的运动

黄聪祎 赵伟文 万德成

黄聪祎, 赵伟文, 万德成. MPS-FEM方法模拟弹性船体在规则波中的运动. 力学学报, 2022, 54(12): 3319-3332 doi: 10.6052/0459-1879-22-468
引用本文: 黄聪祎, 赵伟文, 万德成. MPS-FEM方法模拟弹性船体在规则波中的运动. 力学学报, 2022, 54(12): 3319-3332 doi: 10.6052/0459-1879-22-468
Huang Congyi, Zhao Weiwen, Wan Decheng. Simulation of the motion of an elastic hull in regular waves based on MPS-FEM method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332 doi: 10.6052/0459-1879-22-468
Citation: Huang Congyi, Zhao Weiwen, Wan Decheng. Simulation of the motion of an elastic hull in regular waves based on MPS-FEM method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332 doi: 10.6052/0459-1879-22-468

MPS-FEM方法模拟弹性船体在规则波中的运动

doi: 10.6052/0459-1879-22-468
基金项目: 国家自然科学基金重点资助项目(52131102)
详细信息
    作者简介:

    万德成, 教授, 主要研究方向: 船舶与海洋工程计算水动力学. E-mail: dcwan@sjtu.edu.cn

    通讯作者:

    万德成, 教授, 主要研究方向: 船舶与海洋工程计算水动力学. E-mail: dcwan@sjtu.edu.cn

  • 中图分类号: O35, U633

SIMULATION OF THE MOTION OF AN ELASTIC HULL IN REGULAR WAVES BASED ON MPS-FEM METHOD

  • 摘要: 船舶在海洋中航行时经常会受波浪的作用, 在波浪的作用下, 船体可能会发生六自由度的运动. 在船体运动幅度较小时, 可以简单地将船体运动视为刚体运动. 但当波浪环境较为剧烈、船体运动幅度较大时, 船体可能会发生变形, 此时船舶弹性的影响无法忽略. 因此, 研究弹性船体在波浪中的运动对船舶运动性能和航行安全具有重要的意义. 移动粒子半隐式方法MPS方法是一种基于拉格朗日方法表示的无网格粒子类方法, 该方法在模拟具有自由面大变形特征的问题时具有其独特的优势. 有限元方法FEM作为一种传统的并且已被广泛应用的结构求解方法, 具有很好的稳定性、准确性和鲁棒性. 本文将MPS方法与FEM方法二者的优势结合, 基于MPS-FEM耦合方法, 使用自主开发的MPSFEM-SJTU流固耦合求解器, 模拟刚性船体和弹性船体在规则波中的运动, 并分析船体的弹性对船体运动响应的影响. 首先模拟刚性船体在不同波长的规则波中的运动, 研究规则波波长对船体运动响应的影响. 接着分别模拟了刚性和弹性船体在规则波中的运动, 结果表明, 刚性船体的运动幅值大于弹性船体的运动幅值, 而弹性船体船舯附近的压力大于刚性船体.

     

  • 图  1  固壁边界粒子示意图

    Figure  1.  Schematic diagram of wall boundary particles

    图  2  流固界面插值技术

    Figure  2.  The schematic diagram of coupling fluid-structure interface

    图  3  数值波浪水池示意图

    Figure  3.  Schematic diagram of numerical wave pool

    图  4  四个测点处的波高时历曲线

    Figure  4.  Time history curves of wave height at four measuring points

    图  5  一个周期内规则波的波面分布情况

    Figure  5.  Wave surface of regular wave in a period

    图  6  计算模型示意图

    Figure  6.  Schematic diagram of the calculation model

    图  7  t = t0, t = t0 + T/8, t = t0 + T/4, t = t0 + 3T/8 时刻弹性悬臂梁变形情况

    Figure  7.  Deformation of elastic beam at t = t0, t = t0 + T/8, t = t0 + T/4, t = t0 + 3T/8

    图  8  悬臂梁端点位移的时历曲线

    Figure  8.  The time history curves of the displacement of the cantilever beam endpoint

    图  9  船体粒子与梁模型的等效关系

    Figure  9.  Equivalent relationship between hull particles and beam model nodes

    图  10  非均匀船体梁模型特征参数沿船长的变化

    Figure  10.  Variation of characteristics along the length of a nonuniform hull beam model

    图  11  三维船体在波浪中的运动

    Figure  11.  The ship motion in regular wave

    图  12  船体在规则波中运动的时历曲线

    Figure  12.  The time histories curves of the ship motion

    图  13  不同波长下船体运动响应的时历曲线

    Figure  13.  Ship motion response at different wavelengths

    图  14  不同波长下的船体运动响应平均幅值

    Figure  14.  Motion response average amplitude at different wavelengths

    图  15  弹性船体在规则波中的运动

    Figure  15.  Motion of elastic hull in regular waves

    图  16  弹性和刚性船体的表面压力分布

    Figure  16.  Pressure distribution of elastic and rigid hull

    图  17  弹性和刚性船体的运动响应时历曲线

    Figure  17.  Time history curves of motion response of elastic and rigid hull

    图  18  刚性和弹性船体不同截面处的压力时历曲线

    Figure  18.  Time history curves of pressure at different sections of rigid and elastic hull

    表  1  kvlcc2船实船和模型船参数

    Table  1.   Characteristic parameters of the kvlcc2 ship

    Characteristic parameterReal scaleModel scale
    ship length Lpp/m320.03.2
    ship breadth B/m58.00.58
    ship depth D/m30.00.3
    draft d/m20.80.208
    displacement $\nabla /m^3$3126220.312
    scale ratio100
    下载: 导出CSV

    表  2  船舶运动响应参数

    Table  2.   Ship motion response parameters

    Particle spacingAverage peak valueAverage valley valueAverage amplitudeAttenuation
    heave/m$\Delta {x} = 0.03\mathrm{m}$−0.010−0.09620.0265
    $\Delta {x} = 0.035\mathrm{m}$−0.073−0.09250.0197−25.26%
    $\Delta {x} = 0.04\mathrm{m}$−0.078−0.1010.0235−11.12%
    pitch/(°)$\Delta {x} = 0.03\mathrm{m}$0.055−0.04250.0979
    $\Delta {x} = 0.035\mathrm{m}$0.050−0.03890.0887−9.471%
    $\Delta {x} = 0.04\mathrm{m}$0.049−0.03050.0797−18.59%
    下载: 导出CSV

    表  3  弹性刚性船体运动响应参数对比

    Table  3.   Comparison of motion response parameters of elastic and rigid hulls

    Average peak valueAverage valley valueAverage
    amplitude
    pitch/(°)rigid ship2.775−2.90125.676
    elastic ship2.091−2.16194.253
    (−25.1%)
    heave/mRigid ship0.00764−0.007140.0148
    elastic ship0.00569−0.007380.0131
    (−11.5%)
    下载: 导出CSV
  • [1] 王加夏, 周天九, 刘昆等. 规则波迎浪砰击下三维船体耦合响应研究. 江苏科技大学学报(自然科学版), 2020, 34(4): 13-24 (Wang Jiaxia, Zhou Tianjiu, Liu Kun, et al. Fluid-structure coupling response of a three dimensional ship under regular head wave slamming loads. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(4): 13-24 (in Chinese)
    [2] Oberhagemann J, Holtmann M, Moctar O, et al. Stern slamming of a LNG carrier. Journal of Offshore Mechanics & Arctic Engineering, 2009, 131(3): 1672-1682
    [3] Lakshmynarayanana P, Temarel P, Chen Z. Coupled fluid structure interaction to model three-dimensionaldynamic behaviour of ship in waves//7th International Conference on Hydroelasticity in Marine Technology, Split, Croatia, 2015
    [4] Kim Y, Kim K, Kim Y. Analysis of hydroelasticity of floating shiplike structure in time domain using a fully coupled hybrid BEM-FEM. Journal of Ship Research, 2009, 53(1): 31-47 doi: 10.5957/jsr.2009.53.1.31
    [5] Malenica S, Tuitman J, Bigot F, et al. Some Aspects of 3D Linear Hydroelastic Models of Springing. International Conference on Hydrodynamics, France, 2008.
    [6] Gao R, Ren B, Wang G, et al. Numerical modelling of regular wave slamming on surface of open-piled structures with the corrected SPH method. Applied Ocean Research, 149 2012, 34: 173-186
    [7] Omidvar P, Stansby P, Rogers B. Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 2012, 68(6): 686-705 doi: 10.1002/fld.2528
    [8] Sueyoshi M, Kashiwagi M, Naito S. Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method. Journal of Marine Science and Technology, 2008, 13(2): 85-94 doi: 10.1007/s00773-007-0260-y
    [9] Sueyoshi M. Numerical simulation of extreme motions of a floating body by MPS method. Bridges Across the Oceans, Kobe, Japan, 2004, 1: 566-572
    [10] 饶成平. 基于MPS-FEM耦合方法研究孤立波对弹性结构物的砰击. [硕士论文]. 上海: 上海交通大学, 2018

    Rao Chengping. Numerical investigation of solitary wave-induced slamming on flexible structure by MPS-FEM coupled method. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese)
    [11] Zhang G, Rao C, Wan D. Numerical study of solitary wave slamming on a 3-D flexible plate by MPS-FEM Coupled Method//The Twenty-eighth International Ocean and Polar Engineering Conference (ISOPE2018), Sapporo, Japan, June 10-15, 2018: 46-53
    [12] Lind S, Xu R, Stansby P, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 2012, 231(4): 1499-1523 doi: 10.1016/j.jcp.2011.10.027
    [13] Sun P, Luo M, Touzé DL, et al. The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study. Physics of Fluids, 2019, 31(11): 117108 doi: 10.1063/1.5124613
    [14] Zhang G, Zhao W, Wan D. Moving particle semi-implicit method coupled with finite element method for hydroelastic responses of floating structures in waves. European Journal of Mechanics-B Fluids, 2022, 95: 63-82 doi: 10.1016/j.euromechflu.2022.04.005
    [15] Zhang Y, Wan, D. Numerical study of interactions between waves and free rolling body by IMPS method. Computers and Fluids, 2017, 155: 124133
    [16] Xie F, Zhao W, Wan D. MPS-DEM coupling method for interaction between fluid and thin elastic structures. Ocean Engineering, 2021, 236: 109449 doi: 10.1016/j.oceaneng.2021.109449
    [17] Zhang G, Zha R, Wan D. MPS–FEM coupled method for 3D dam-break flows with elastic gate structures. European Journal of Mechanics-B Fluids, 2022, 94: 171-189 doi: 10.1016/j.euromechflu.2022.02.014
    [18] Sun Y, Xi G, Sun Z. A fully Lagrangian method for fluid–structure interaction problems with deformable floating structure. Journal of Fluids and Structures, 2019, 90: 379-395 doi: 10.1016/j.jfluidstructs.2019.07.005
    [19] Sun Z, Djidjeli K, Xing J, et al. Coupled MPS-modal superposition method for 2 D nonlinear fluid-structure interaction problems with free surface. Journal of Fluids and Structures, 2016, 61: 295-323
    [20] Sun Z, Zhang G, Zong Z, et al. Numerical analysis of violent hydroelastic problems based on a mixed MPS-mode superposition method. Ocean Engineering, 2019, 179: 285-297
    [21] Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769 doi: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
    [22] Khayyer A, Gotoh H. Development of CMPS method for accurate water-surface tracking in breaking waves. Coastal Engineering Journal, 2008, 50(2): 179-207 doi: 10.1142/S0578563408001788
    [23] Tanaka M, Masunaga T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility. Journal of Computational Physics, 2010, 229(11): 4279-4290 doi: 10.1016/j.jcp.2010.02.011
    [24] 张雨新. 改进的MPS方法及其三维并行计算研究. [博士论文]. 上海: 上海交通大学, 2014

    Zhang Yuxin. Development and application of 3D parallel improved meshless MPS method. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese))
    [25] Khayyer A, Gotoh H. Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Engineering, 2009, 56(4): 419-440 doi: 10.1016/j.coastaleng.2008.10.004
    [26] Khayyer A, Gotoh H. A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Applied Ocean Research, 2010, 32(1): 124-131 doi: 10.1016/j.apor.2010.01.001
    [27] Lee B, Park J, Kim M, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Computer Methods in Applied Mechanics and Engineering, 2011, 200: 1113-1125 doi: 10.1016/j.cma.2010.12.001
    [28] Zhang, Y, Wan D, Hino T. Comparative study of MPS method and level-set method for sloshing flows. Journal of Hydrodynamics, 2014, 26(4): 577-585 doi: 10.1016/S1001-6058(14)60065-2
    [29] Newmark N. A Method of computation for structural dynamics. Journal of the Engineering Mechanics Division. 1959, 85(3): 67-94
    [30] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow//Fluid structure Interaction, Springer, 2006: 371–385
    [31] Sun PN, Touze DL, Oger G, et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering, 2021, 211: 109552
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  36
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-02
  • 录用日期:  0022-11-25
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回