EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部煤岩界面超低摩擦时变模型及能量转化研究

李利萍 余泓浩 张海涛 潘一山

李利萍, 余泓浩, 张海涛, 潘一山. 深部煤岩界面超低摩擦时变模型及能量转化研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-467
引用本文: 李利萍, 余泓浩, 张海涛, 潘一山. 深部煤岩界面超低摩擦时变模型及能量转化研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-467
Li Liping, Yu Honghao, Zhang Haitao, Pan Yishan. Ultra-low friction time-change model and energy conversion of deep coal-rock interface. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-467
Citation: Li Liping, Yu Honghao, Zhang Haitao, Pan Yishan. Ultra-low friction time-change model and energy conversion of deep coal-rock interface. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-467

深部煤岩界面超低摩擦时变模型及能量转化研究

doi: 10.6052/0459-1879-22-467
基金项目: 国家自然科学基金项目(51974148)、辽宁省“兴辽英才计划”项目(XLYC1807130)资助
详细信息
    作者简介:

    李利萍, 教授、博士生导师, 主要研究方向: 深部岩体力学特性. E-mail: liliping@lntu.edu.cn

  • 中图分类号: 

ULTRA-LOW FRICTION TIME-CHANGE MODEL AND ENERGY CONVERSION OF DEEP COAL-ROCK INTERFACE

  • 摘要: 深部煤岩超低摩擦型冲击地压实质是巨量煤岩体沿煤岩界面发生失稳滑动的时变过程, 期间煤岩界面摩擦力和摩擦系数随时间变化, 同时伴随煤岩界面摩擦力做功向煤岩冲击动能释放能量转化特征. 为定量描述煤岩界面能量转化规律, 引入量纲分析法, 实验测定了煤岩弹性系数、阻尼系数和待定系数, 给出了深部煤岩界面摩擦系数表达式. 以沈阳红阳三矿为研究对象, 通过实验研究和工程实际相结合, 定义了冲击动能转化率新指标, 验证了所建模型可靠性, 定量描述了煤岩界面摩擦力做功向煤岩冲击动能转化规律. 研究结果表明: 深部煤岩界面摩擦系数随冲击载荷幅值增大而线性降低, 随冲击载荷频率增大而线性增加. 深部煤岩界面摩擦力的降幅和降低速率变化急剧, 当冲击载荷幅值为5000 N、冲击载荷频率为500 Hz时, 深部煤岩界面摩擦力降幅为97%、降低速率为38.9 kN/ms ~ 41.38 kN/ms时发生超低摩擦效应. 首次从摩擦力降低幅值和降低速率定量表征超低摩擦效应. 结合实验和工程实际分析发现, 能耗比实验结果均值为0.441, 红阳三矿“11.11”冲击地压计算结果为0.488, 两者较为接近, 进一步证明所建模型合理性.

     

  • 图  1  深部煤岩界面超低摩擦效应时变力学模型

    Figure  1.  Time-varying model of ultra-low friction effects at the interface of deep coal rocks

    图  2  煤和砂岩试件

    Figure  2.  Coal and sandstone specimens

    图  3  实验设备

    Figure  3.  Test equipment

    图  4  轴向动应力滞回环

    Figure  4.  Axial dynamic stress hysteresis loop

    图  5  摩擦系数随法向力变化曲线

    Figure  5.  Coefficient of friction curve with normal force

    图  6  不同冲击载荷幅值作用下摩擦系数随时间变化规律

    Figure  6.  The coefficient of friction changes with time under the action of different impact load amplitudes

    图  7  不同冲击载荷幅值作用下摩擦力随时间变化规律

    Figure  7.  The law of friction with time under the action of different impact load amplitudes

    图  8  摩擦系数平均值随冲击载荷幅值变化规律

    Figure  8.  The average value of friction factor varies with the amplitude of impact load

    图  9  不同冲击载荷频率下摩擦系数随时间变化规律

    Figure  9.  The coefficient of friction changes with time at different shock load frequencies

    图  10  不同冲击载荷频率下摩擦力随时间变化规律

    Figure  10.  The friction force changes with time under different impact load frequencies

    图  11  摩擦系数平均值随冲击载荷频率变化规律

    Figure  11.  The average value of friction factor varies with the frequency of impact load

    图  12  砂岩试样和煤试样

    Figure  12.  Sandstone sample and coal sample

    图  13  深部煤岩超低摩擦实验装置

    Figure  13.  Ultra-low friction experimental device for deep coal rock

    图  14  深部煤岩超低摩擦实验系统示意图

    Figure  14.  Schematic diagram of ultra-low friction experimental system for deep coal rocks

    图  15  工作块体水平位移、速度、加速度时程曲线

    Figure  15.  Time curves of horizontal displacement, velocity and acceleration of the working block

    图  16  能耗比n随水平冲击应力变化规律

    Figure  16.  Energy consumption ratio n changes with the impact stress

    图  17  红阳三矿超低摩擦型冲击地压示意图

    Figure  17.  Anomalously of low friction rock burst in Hongyang No.3 Mine

    表  1  参数量纲

    Table  1.   Dimension of parameters

    ParameterSymbolDimension
    Load time-varyingPMLT−2
    Static load timet0T
    Elasticity coefficientkMT−2
    Damping coefficientcMT−1
    Gravity accelerationgLT−2
    Coefficient of frictionµ1
    下载: 导出CSV

    表  2  煤样单轴压缩实验结果

    Table  2.   Uniaxial compression test results of coal

    Coal numberElastic modulus/GPacompressive strength
    $ {\sigma _c} $/MPa
    Elasticity coefficient k/N·m−1
    1#1.0011.748.6 × 105
    2#1.1113.029.8 × 105
    3#1.1015.059.8 × 105
    4#1.2914.771.3 × 106
    5#1.0913.941.5 × 106
    Average1.1213.701.1 × 106
    下载: 导出CSV

    表  3  砂岩单轴压缩试验结果

    Table  3.   Uniaxial compression test results of sandstone

    Sandstone numberElastic modulus/GPacompressive strength $ {\sigma _c} $/MPaElasticity coefficient k/N·m−1
    1#5.0542.112.6 × 106
    2#4.5644.022.4 × 106
    3#4.6947.782.3 × 106
    4#3.6237.442.9 × 106
    5#4.9638.784.9 × 106
    Average4.5842.033.0 × 106
    下载: 导出CSV

    表  4  实验测定摩擦系数数据

    Table  4.   Experimental determination of friction coefficient data

    Static load time t0/sCounterweight mass /kg
    35101520
    1000.5170.5210.5220.5270.526
    10000.5270.5270.5300.5320.540
    100000.5330.5340.5380.5370.544
    下载: 导出CSV

    表  5  不同静载时间和冲击应力下能量转化数据

    Table  5.   Energy conversion data under different static load times and impact stresses

    The experiment
    number
    Static load
    time t0/ms
    Horizontal impact
    stress/MPa
    Friction
    energy Wf/J
    Impact kinetic
    energy Ek/J
    Energy consumption
    ratio n
    Average Energy
    consumption ratio
    11000.54.29371.91500.4460.441
    21.04.51121.97590.438
    31.55.01002.16430.432
    42.04.92532.20160.447
    510000.54.06701.80980.445
    61.04.38561.89020.431
    71.54.71822.01940.428
    82.04.66012.04580.439
    9100000.53.86561.75110.453
    101.04.10001.82450.445
    111.54.40921.92680.437
    122.04.69112.10630.449
    下载: 导出CSV
  • [1] 何满潮. 深部建井力学研究进展. 煤炭学报, 2021, 46(3): 726-746 (He Manchao. Research progress of deep shaft construction mechanics. Journal of China Coal Society, 2021, 46(3): 726-746 (in Chinese) doi: 10.13225/j.cnki.jccs.YT21.0124
    [2] 李利萍, 李卫军, 潘一山. 冲击扰动对超低摩擦型冲击地压影响分析. 岩石力学与工程学报, 2019, 38(1): 111-120 (Li Liping, Li Weijun, Pan Yishan. Influence of impact disturbance on anomalously low friction rock bursts. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 111-120 (in Chinese) doi: 10.13722/j.cnki.jrme.2018.0922
    [3] Kurlenya MV, Oparin VN, Vostrikov VI. Pendulum-type waves. Part II:Experimental methods and main results of physical modeling. Journal of Mining Science, 1996, 32(4): 245-273
    [4] Kurlenya MV, Oparin VN, Vostrikov VI. Effect of anomalously low friction in block media. Journal of Applied Mechanics and Technical Physics, 1999, 40(6): 1116-1120 doi: 10.1007/BF02469182
    [5] Tarasov BG, Randolph MF. Frictionless shear at great depth and other paradoxes of hard rocks. International Journal of Rock Mechanics and Mining Sciences, 2007, 45(3): 316-328
    [6] Rutter EH, Hackston AJ, Yeatman E. Reduction of friction on geological faults by weak-phase smearing. Journal of Structural Geology, 2013, 51(1): 52-60
    [7] 钱七虎. 深部地下空间开发中的关键科学问题. 见钱七虎院士论文选集, 2007: 565-584

    Qian Qihu. Key scientific issues in deep underground space development. In: Selections from Academician Qian Qihu’s Theses, 2007: 565-584(in Chinese))
    [8] 王洪亮, 葛涛, 王德荣等. 块系岩体动力特性理论与实验对比分析. 岩石力学与工程学报, 2007, 26(5): 951-958 (Wang Hongliang, Ge Tao, Wang Derong, et al. Comparison of theoretical and experimental analyses of dynamic characteristics of block rock mass. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 951-958 (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.05.012
    [9] 吴昊, 方秦, 王洪亮. 深部块系岩体超低摩擦现象的机理分析. 岩土工程学报, 2008, 30(5): 769-775 (Wu Hao, Fang Qin, Wang Hongliang. Mechanism of anomalously low friction phenomenon in deep block rock mass. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 769-775 (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.05.025
    [10] Wu H, Fang Q, Lu YS, et al. Model tests on anomalous low friction and pendulum-type wave phenomena. Progress in Natural Science, 2009, 19(12): 1805-1820 doi: 10.1016/j.pnsc.2009.09.001
    [11] 王明洋, 戚承志, 钱七虎. 深部岩体块系介质变形与运动特性研究. 岩石力学与工程学报, 2005, 24(16): 2825-2830 (Wang Mingyang, Qi Chengzhi, Qian Qihu. Study on deformation and motion characteristics of blocks in deep rock mass. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2825-2830 (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.16.003
    [12] 王明洋, 周泽平, 钱七虎. 深部岩体的构造和变形与破坏问题. 岩石力学与工程学报, 2006, 25(3): 448-455 (Wang Mingyang, Zhou Zeping, Qian Qihu. Tectonic, deformation and failure problems of deep rock mass. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 448-455 (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.002
    [13] Liu DQ, Lin YW, Wang Y, et al. Experimental study on ultra-low friction effect of granite block under coupled static and dynamic loads. Geotechnical and Geological Engineering, 2020, 38(16): 4521-4528
    [14] 蒋海明, 李杰, 王明洋. 块系岩体滑移失稳中低摩擦效应的理论与试验研究. 岩土力学, 2019, 40(4): 1405-1412 (Jiang Haiming, Li Jie, Wang Mingyang. Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass. Rock and Soil Mechanics, 2019, 40(4): 1405-1412 (in Chinese) doi: 10.16285/j.rsm.2017.2223
    [15] 许琼萍, 陆渝生, 王德荣. 深部岩体块系摩擦减弱效应试验. 解放军理工大学学报(自然科学版), 2009, 10(3): 285-289 (Xu Qiongping, Lu Yusheng, Wang Derong. Experimental study on friction weakened effect of deep block rock mass. Journal of PLA University of Science and Technology (Natural Science Edition), 2009, 10(3): 285-289 (in Chinese)
    [16] 潘一山, 王凯兴. 岩体间超低摩擦发生机理的摆型波理论. 地震地质, 2014, 36(3): 833-844 (Pan Yishan, Wang Kaixin. Pendulum wave theory of ultra-low friction mechanism between rock masses. Seismology and Geology, 2014, 36(3): 833-844 (in Chinese) doi: 10.3969/j.issn.0253-4967.2014.03.022
    [17] 蔡武. 断层型冲击矿压的动静载叠加诱发原理及其监测预警研究. [博士论文]. 江苏: 中国矿业大学, 2015

    Cai Wu. Study on the principle and monitoring and early warning of fault rock burst induced by static and static load superposition. [Ph.D.Thesis]. Jiangsu: China University of Mining and Technology, 2015(in Chinese))
    [18] 李利萍, 潘一山, 鞠翔宇等. 平均应力对超低摩擦型冲击地压影响试验研究. 中国矿业大学学报, 2020, 49(1): 76-83 (Li Liping, Pan Yishan, Ju Xiangyu, et al. Experimental study of the effect of meanstress on anomalously low friction rock burst. Journal of China University of Mining and Technology, 2020, 49(1): 76-83 (in Chinese) doi: 10.13247/j.cnki.jcumt.001102
    [19] 李利萍, 唐垒, 潘一山等. 基于FLAC-3 D砂岩块体超低摩擦鞭梢效应研究. 应用数学和力学, 2022, 43(3): 300-311 (Li Liping, Tang Lei, Pan Yishan, et al. Ultralow Friction Whipping Effects of Sandstone Blocks Based on FLAC-3 D. Applied Mathematics and Mechanics, 2022, 43(3): 300-311 (in Chinese)
    [20] 李利萍, 唐垒, 潘一山等. 应力波扰动对砂岩块体超低摩擦效应影响分析. 岩石力学与工程学报, 2021, 40(S1): 2773-2780 (Li Liping, Tang Lei, Pan Yishan, et al. Analysis of influence of stress wave disturbance on anomalously low friction effect in sandstone block. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2773-2780 (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0990
    [21] 李利萍, 唐垒, 潘一山等. 高宽比及应力波扰动对砂岩块体超低摩擦影响试验研究. 岩石力学与工程学报, 2022, 41(7): 1384-1393 (Li Liping, Tang Lei, Pan Yishan, et al. Experimental study on effect of height-width ratio and stress wave disturbance on anomalously low friction of sandstone blocks. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(7): 1384-1393 (in Chinese) doi: 10.13722/j.cnki.jrme.2021.0973
    [22] 温诗铸, 黄平. 摩擦学原理. 北京: 清华大学出版社, 2008

    Wen Shizhu, Huang Ping. Tribological principle. Beijing: Tsinghua University Press, 2008(in Chinese))
    [23] 谈庆明. 量纲分析. 安徽: 中国科学技术大学出版社, 2005

    Tan Qingming. Dimension analysis. Anhui: University of Science and Technology of China Press, 2005(in Chinese))
    [24] Xiao JQ, Ding DX, Jiang FL, et al. Fatigue damage variable and evolution of rock subjected to cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 461-468 doi: 10.1016/j.ijrmms.2009.11.003
    [25] Liu EL, He SM. Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Engineering Geology, 2012, 125(27): 81-91
    [26] 王者超, 赵建纲, 李术才等. 循环荷载作用下花岗岩疲劳力学性质及其本构模型. 岩石力学与工程学报, 2012, 31(9): 1888-1900 (Wang Zhechao, Zhao Jiangang, Li Shucai, et al. Fatigue mechanical behavior of granite subjected to cyclic load and its constitutive model. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1888-1900 (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.09.021
    [27] 何明明, 李宁, 陈蕴生, 等. 不同循环加载条件下岩石阻尼比和阻尼系数研究. 岩土力学, 2017, 38(09): 2531-2538 (He Mingming, Li Ning, Chen Yunsheng, et al. Damping ratio and damping coefficient of rock under different cyclic loading conditions. Rock and Soil Mechanics, 2017, 38(09): 2531-2538 (in Chinese)
    [28] 粟多武, 吴书清, 李春剑, 等. 国家重力计量参考网的初步建立研究. 地球科学进展, 2021, 36(5): 536-542 (Su Duowu, Wu Shuqing, Li Chunjian, et al. Preliminary research in the establishment of national gravimetric reference network. Advances in Earth Science, 2021, 36(5): 536-542 (in Chinese) doi: 10.11867/j.issn.1001-8166.2021.051
    [29] 王来贵, 黄润秋, 等. 岩石力学系统运动稳定性理论及其应用. 北京: 地质出版社, 1998

    Wang Laigui, Huang Runqiu, et al. Motion stability of rock mechanics system and its application. Beijing: Geology Press, 1998(in Chinese))
    [30] 李利萍, 李卫军, 潘一山. 基于竖向位移差的块系岩体超低摩擦效应理论分析. 煤炭学报, 2019, 44(7): 2116-2124 (Li Liping, Li Weijun, Pan Yishan. Theoretical analysis of anomalously low friction effect of block rock media based on vertical displacement difference. Journal of China Coal Society, 2019, 44(7): 2116-2124 (in Chinese) doi: 10.13225/j.cnki.jccs.2018.1013
    [31] 何满潮, 钱七虎. 深部岩体力学基础. 北京: 科学出版社, 2010

    He Mianchao, Qian Qihu. The basis of deep rock mechanics. Beijing: Science Press, 2010(in Chinese))
    [32] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索. 岩石力学与工程学报, 2015, 34(11): 2161-2178 (Xie Heping, Gao Feng, Ju Yang. Resrarch and development of rock mechanics in deep ground engineering. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178 (in Chinese) doi: 10.13722/j.cnki.jrme.2015.1369
    [33] 李利萍, 潘一山. 深部煤岩超低摩擦效应能量特征试验研究. 煤炭学报, 2020, 45(S1): 202-210 (Li Liping, Pan Yishan. Experimental research on energy characteristics of anomalously low friction effect in deep coal and rock mass. Journal of China Coal Society, 2020, 45(S1): 202-210 (in Chinese) doi: 10.13225/j.cnki.jccs.2019.1756
    [34] 王元杰, 霍永金, 张宗文等. 基于最小平方法的微震震级与能量关系研究. 煤矿开采, 2015, 20(4): 104-106 (Wang Yuanjie, Huo Yongjin, Zhang Zongwen, et al. Relationship of Micro-seismic Magnitude and Energy Based on Minimum Square Method. Coal Mining Technology, 2015, 20(4): 104-106 (in Chinese) doi: 10.13532/j.cnki.cn11-3677/td.2015.04.030
    [35] 谢和平. 深部岩体力学与开采理论研究构想与预期成果展望. 工程科学与技术, 2017, 49(2): 1-16 (Xie Heping. Research Framework and Anticipated Results of Deep Rock Mechanics and Mining Theory. Advanced Engineering Sciences, 2017, 49(2): 1-16 (in Chinese)
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  16
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-11-19

目录

    /

    返回文章
    返回