FORCE-DISTRIBUTION ANALYSIS FOR REDUNDANT CABLE-DRIVEN PARALLEL ROBOTS UNDER HYBRID JOINT-SPACE INPUT
-
摘要: 绳驱并联机器人是由绳索代替刚性杆件的一类特殊机器人, 其中绳索具有只能承受拉力而不能承受压力的特点, 冗余绳驱并联机器人的绳力分配问题是一个难点. 在关节混合空间控制中, 将冗余的绳索组合采用绳力控制, 而其余绳索进行绳长控制. 因为不同的绳索组合可能导致不同的控制效果, 本研究旨在解决关节混合空间控制条件下, 力控绳索组合的选择问题. 以二冗余绳驱并联机器人为例, 通过向量空间基变换方法, 实现了冗余绳驱系统绳力在拉力索张力空间的表达. 基于拉力索张力空间, 计算了绳力控制绳索组合的对称最大误差带, 用于找到合适的绳索组合用于力控. 使用多体动力学仿真手段, 对关节混合空间的控制效果和对称最大误差带解析解计算方法的正确性进行了模拟验证. 在同时考虑绳长和绳力控制误差的条件下, 发现当选择不合适的绳索组合时, 绳力误差会被显著放大, 说明了本文针对绳力分布特性分析的意义. 本文提出的对称最大误差带概念同时也为关节混合空间控制策略下的绳力控制器设计提供指导.Abstract: Cable-driven parallel robots (CDPRs) represent a class of particular parallel robots whose rigid links are replaced by cables, where cable can only generate pull force and cannot be compressed. The force distribution in cables is one of the core problems for redundant CDPRs. The hybrid joint-space control strategy, where the chosen redundant cables are force-controlled, whereas the remaining ones are length-controlled in the joint space, is the main type of control strategy discussed in this paper. Because different cable combinations may lead to different control effects. This study provides the selection criteria for the target force-controlled cable combination in the hybrid-input control strategy. The cable tensions in the space with tension vectors as basis for two redundancies for cable-driven parallel robots were expressed based on the equivalent transformation method of vector space basis. The acceptable cable force errors limit proposed in this paper (CFEL) were defined and calculated based on the cable tensions in the space with tension vectors to find appropriate cable combinations for the force control. To validate the analysis of the force-distribution characteristics, a hybrid-input control trajectory planning strategy was developed using multibody dynamics simulations, based on a suspended cable configuration with layouts including two redundancies, while considering the interference of cable length and cable forces. In addition, a fix-pose simulation case via hybrid-input control strategy was performed to validate accuracy of the proposed calculation method for the CFEL. Finally, we found that cable combinations play an essential role for force control as the force control errors may be significantly magnified in cable combinations with high force-distribution sensitivity characteristics. The simulation results illustrate the significance of the analysis in this paper. What’s more, the concept of CFEL proposed in this paper provides guidance for the design of cable force controllers under the control strategies of hybrid joint-space input.
-
图 12 绳力分布曲线: (a)理想绳力分布, (b)采用绳索组合7–8力控时没有绳长控制误差的绳力分布, (c)采用绳索组合7–8力控时绳长误差和绳力误差共同作用的绳力分布, (d)采用绳索组合3–7力控时没有绳长控制误差的绳力分布, (e)采用绳索组合3–7力控时绳长误差和绳力误差共同作用的绳力分布
Figure 12. Force distribution: (a) ideal force distribution, (b) force distribution without cable length error when cable combination 7–8 is force-controlled, (c) force distribution with cable length error when cable combination 7–8 is force-controlled, (d) force distribution without cable length error when cable combination 3–7 is force-controlled and (e) force distribution with cable length error when cable combination 3–7 is force-controlled
表 1 出绳点和结绳点的位置信息
Table 1. Position parameters of the cable robots
Cable The positions of fixed points in the inertial frame O (X, Y, Z) The positions of distal points in the inertial frame O’ (x, y, z) point X/m Y/m Z/m point x/m y/m z/m 1 A1 1.992 −0.174 2.000 B1 0.1075 −0.1687 0 2 A2 1.992 0.174 2.000 B2 0.1075 0.1687 0 3 A3 −0.845 1.813 2.000 B3 0.0923 −0.1774 0 4 A4 −1.147 1.638 2.000 B4 −0.1998 0.0087 0 5 A5 −1.147 −1.638 2.000 B5 −0.1998 −0.0087 0 6 A6 −0.845 −1.813 2.000 B6 0.0923 −0.1774 0 7 A7 −2.000 0 2.000 B7 −0.1998 −0.0087 0 8 A8 1.000 1.730 2.000 B8 0.1075 0.1687 0 表 2 在[0 0 0]处绳索组合及其对应的FDS和CFEL值
Table 2. The FDS and CFEL values at the position [0 0 0]
No. i j FDS CFEL Tmin = 1 N CFEL Tmin = 2 N CFEL Tmin = 3 N No. i j FDS CFEL Tmin = 1 N CFEL Tmin = 2 N CFEL Tmin = 3 N 1 1 2 12.49 0.66 0.55 0.45 15 3 5 2.32 3.31 2.72 2.14 2 1 3 5.96 1.44 1.21 0.97 16 3 6 6.56 1.31 1.10 0.88 3 1 4 5.86 1.31 1.08 0.85 17 3 7 2.26 3.40 2.80 2.20 4 1 5 10.24 0.66 0.55 0.43 18 3 8 8.48 1.01 0.84 0.68 5 1 6 139.84 0.04 0.036 0.029 19 4 5 6.51 1.18 0.93 0.76 6 1 7 6.49 1.17 0.97 0.76 20 4 6 6.91 1.11 0.92 0.72 7 1 8 7.21 1.19 1.00 0.80 21 4 7 10.24 0.75 0.62 0.49 8 2 3 6.19 1.39 1.16 0.93 22 4 8 2.37 3.62 3.03 2.43 9 2 4 2.47 2.74 2.25 1.77 23 5 6 12.84 0.53 0.44 0.35 10 2 5 2.92 2.06 1.70 1.33 24 5 7 9.32 0.83 0.68 0.53 11 2 6 12.79 0.65 0.54 0.44 25 5 8 2.23 3.74 3.12 2.51 12 2 7 2.37 2.95 2.43 1.91 26 6 7 7.91 0.97 0.80 0.63 13 2 8 10.23 0.84 0.70 0.56 27 6 8 7.89 1.09 0.91 0.73 14 3 4 2.95 2.62 2.16 1.70 28 7 8 0.70 5.96 4.91 3.86 -
[1] Alp AB, Agrawal SK. Cable suspended robots: design, planning and control//2002 IEEE International Conference on Robotics and Automation, Washington, USA, 2002: 4275-4280 [2] Sun C, Gao H, Liu Z, et al. Design and optimization of three-degree-of-freedom planar adaptive cable-driven parallel robots using the cable wrapping phenomenon. Mechanism and Machine Theory, 2021, 166: 104475 doi: 10.1016/j.mechmachtheory.2021.104475 [3] 张耀军, 张玉茹, 戴晓伟. 基于工作空间最大化的平面柔索驱动并联机构优化设计. 机械工程学报, 2011, 47(13): 29-34 (Zhang Yaojun, Zhang Yuru, Dai Xiaowei. Optimal design for planar cable-driven parallel mechanism with respect to maximizing workspace. Journal of Mechanical Engineering, 2011, 47(13): 29-34 (in Chinese) doi: 10.3901/JME.2011.13.029 [4] Zi B, Sun H, Zhang D, et al. Design, analysis and control of a winding hybrid-driven cable parallel manipulator. Robotics and Computer-Integrated Manufacturing, 2017, 48: 196-208 doi: 10.1016/j.rcim.2017.04.002 [5] Wu Y, Cheng HH, Fingrut A, et al. CU-brick cable-driven robot for automated construction of complex brick structures: From simulation to hardware realization//2018 IEEE International Conference on Simulation, Modeling, and Programming for Aytonomous Robot. Brisbane, Australia, 2018: 166-173 [6] Melenbrink N, Werfel J, Menges A. On-site autonomous construction robots: towards unsupervised building. Automation in Construction, 2020, 119: 103312 doi: 10.1016/j.autcon.2020.103312 [7] 于金山, 李潇, 陶建国等. 面向在轨装配的八索并联机构构型设计与工作空间分析. 机械工程学报, 2021, 57(21): 1-10 (Yu Jinshan, Li Xiao, Tao Jianguo, et al. Configuration design and workspace analysis of parallel mechanism driven by eight cables for on-orbit assembly. Journal of Mechanical Engineering, 2021, 57(21): 1-10 (in Chinese) doi: 10.3901/JME.2021.21.001 [8] Sun Y, Qiu Y, Liu P, et al. Dynamic modeling, workspace analysis and multi-objective structural optimization of the large-span high-speed cable-driven parallel camera robot. Machines, 2022, 10: 565 doi: 10.3390/machines10070565 [9] Rosati G, Andreolli M, Biondi A, et al. Performance of cable suspended robots for upper limb rehabilitation//IEEE 10th International Conference on Rehabilitation Robotics. Noordwijk, Netherlands, 2007: 385-392 [10] Bosscher P, Williams RL, Tummino M, et al. A concept for rapidly-deployable cable robot search and rescue systems//Asme International Design Engineering Technical Conferences & Computers & Information in Engineering Conference, California, USA. 2005: 589-598 [11] 刘欣, 仇原鹰, 盛英. 风洞试验绳牵引冗余并联机器人的刚度增强与运动控制. 航空学报, 2009, 30(6): 1156-1164 (Liu Xin, Qiu Yuanying, Sheng Ying. Stiffness enhancement and motion control of a 6-DOF wire-driven parallel manipulator with redundant actuations for wind tunnels. Acta Aeronautica et Astronautica sinica, 2009, 30(6): 1156-1164 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.06.030 [12] Qin Z, Liu Z, Liu Y, et al. Workspace analysis and optimal design of dual cable-suspended robots for construction. Mechanism and Machine Theory, 2022(171): 104763 [13] Pott A. An improved force distribution algorithm for over-constrained cable-driven parallel robots//Marco Ceccarelli ed. Computational Kinematics. Springer, Dordrecht, 2014: 139-146 [14] Gosselin C, Grenier M. On the determination of the force distribution in over constrained cable-driven parallel mechanisms. Meccanica, 2011, 46: 3-15 [15] Gouttefarde M, Lamaury J, Reichret C, et al. A versatile tension distribution algorithm for n-DOF parallel robots driven by n+2 cables//IEEE Transactions on Robotics, 2015: 1444-1457 [16] 宋达. 多冗余绳驱并联系统绳力分布算法研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019Song Da. Research on cable tension distribution algorithm of multi-redundant cable-driven parallel system. [Master Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese) [17] Sun G, Liu Z, Gao H, et al. Direct method for tension feasible region calculation in multi-redundant cable-driven parallel robots using computational geometry. Mechanism and Machine Theory, 2021, 158: 104225 [18] Gao H, Sun G, Liu Z, et al. Tension distribution algorithm based on graphics with high computational efficiency and robust optimization for two-redundant cable-driven parallel robots. Mechanism and Machine Theory, 2022(172): 104739 [19] Ameri A, Molaei A, Khosravi MA. Nonlinear observer-based tension distribution for cable-driven parallel robots//Marc Gouttefarde, Tobias Bruckmann, Andreas Pott eds. Cable-Driven Parallel Robots. Cham: Springer, 2021: 105-116 [20] Zhao T, Zi B, Qian S, et al. Algebraic method-based point-to-point trajectory planning of an under-constrained cable-suspended parallel robot with variable angle and height cable mast. Chinese Journal of Mechanical Engineering, 2020, 33(1): 1-18 [21] Liu Z, Qin Z, Gao H, et al. Mass design method considering force control errors for two-redundant cable-suspended parallel robots. Mechanism and Machine Theory, 2022, 177: 105043 [22] Khalilpour SA, Khorrambakht R, Taghirad HD, et al. Robust cascade control of a deployable cable-driven robot. Mechanical Systems and Signal Processing, 2019, 127: 513-530 [23] Brycjmann T, Mikelsons L, Hiller M, et al. A new force calculation algorithm for tendon-based parallel manipulators//2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich, Switzerland, 2007: 1-6 [24] Bouchard S, Gosselin C, A simple control strategy for over-constrained parallel cable. mechanisms//The Canadian Congress of Applied Mechanics (CANCAM). McGill University, Montreal, 2005 [25] 杨继锋, 姚蕊, 陈捷. 索牵引弹体装填机器人的尺寸优化设计. 清华大学学报(自然科学版), 2021, 61(3): 217-223 (Yang Jifeng, Yao Rui, Chen Jie. Cable-driven projectile loading robot. Journal of Tsinghua University (Science and Technology) , 2021, 61(3): 217-223 (in Chinese) [26] 姚蕊. 大跨度索并联机构力学特征及尺寸综合设计研究. [博士论文]. 北京: 清华大学, 2010Yao Rui. Study on tension characteristic and dimensional synthetic design of cable driven parallel manipulators with large span. [PhD Thesis]. Beijing: Tsinghua University, 2010 (in Chinese)) [27] Mattioni V, Idà E, Carricato M. Force-distribution sensitivity to cable-tension errors: A preliminary investigation//Marc Gouttefarde, Tobias Bruckmann, Andreas Pott eds. Cable-Driven Parallel Robots. Springer, Cham, 2021: 129-141 [28] 欧阳波, 尚伟伟. 6自由度绳索并联机器人力封闭工作空间的快速求解方法. 机械工程学报, 2013, 49(15): 34-41 (Ou Yangbo, Shang Weiwei. Efficient computation method of force-closure workspace for 6-DOF cable-driven parallel manipulators. Journal of Mechanical Engineering, 2013, 49(15): 34-41 (in Chinese) doi: 10.3901/JME.2013.15.034 [29] 崔志伟, 唐晓强, 候森浩等. 索驱动并联机器人可控刚度特性. 清华大学学报(自然科学版), 2018, 58(2): 204-211 (Cui Zhiwei, Tang Xiaoqiang, Hou Senhao, et al. Characteristics of controllable stiffness for cable-driven parallel robots. Journal of Tsinghua University (Science and Technology) , 2018, 58(2): 204-211 (in Chinese) [30] 秦志伟, 刘振, 孙国鹏等. 空间绳网旋转展开动力学分析. 宇航学报, 2021, 42(1): 41-49 (Qin Zhiwei, Liu Zhen, Sun Guopeng, et al. Dynamic analysis of spinning deployment of space web. Journal of Astronautics, 2021, 42(1): 41-49 (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.01.005 [31] 游虹, 尚伟伟, 张彬等. 基于高速视觉的绳索牵引并联机器人轨迹跟踪控制. 机械工程学报, 2019, 55(5): 19-26 (You Hong, Shang Weiwei, Zhang Bin, et al. Trajectory tracking control of cable-driven parallel robots by using high-speed vision. Journal of Mechanical Engineering, 2019, 55(5): 19-26 (in Chinese) doi: 10.3901/JME.2019.05.019 -