EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关节混合空间控制下的冗余绳驱并联机器人绳力分布特性分析

秦志伟 刘振 高海波 孙光耀 孙聪 邓宗全

秦志伟, 刘振, 高海波, 孙光耀, 孙聪, 邓宗全. 关节混合空间控制下的冗余绳驱并联机器人绳力分布特性分析. 力学学报, 2023, 55(2): 1-14 doi: 10.6052/0459-1879-22-463
引用本文: 秦志伟, 刘振, 高海波, 孙光耀, 孙聪, 邓宗全. 关节混合空间控制下的冗余绳驱并联机器人绳力分布特性分析. 力学学报, 2023, 55(2): 1-14 doi: 10.6052/0459-1879-22-463
Qin Zhiwei, Liu Zhen, Gao Haibo, Sun Guangyao, Sun Cong, Deng Zongquan. Force-distribution analysis for redundant cable-driven parallel robots under hybrid joint-space input. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-14 doi: 10.6052/0459-1879-22-463
Citation: Qin Zhiwei, Liu Zhen, Gao Haibo, Sun Guangyao, Sun Cong, Deng Zongquan. Force-distribution analysis for redundant cable-driven parallel robots under hybrid joint-space input. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-14 doi: 10.6052/0459-1879-22-463

关节混合空间控制下的冗余绳驱并联机器人绳力分布特性分析

doi: 10.6052/0459-1879-22-463
基金项目: 国家自然科学基金 (51521003)和“111”创新引智计划 (B07018)资助项目
详细信息
    通讯作者:

    刘振, 教授, 主要研究方向为绳驱并联机器人、星球车移动系统等. E-mail: zhenliu_hit@163.com

  • 中图分类号: TH113.2+2

FORCE-DISTRIBUTION ANALYSIS FOR REDUNDANT CABLE-DRIVEN PARALLEL ROBOTS UNDER HYBRID JOINT-SPACE INPUT

  • 摘要: 绳驱并联机器人是由绳索代替刚性杆件的一类特殊机器人, 其中绳索具有只能承受拉力而不能承受压力的特点, 冗余绳驱并联机器人的绳力分配问题是一个难点. 在关节混合空间控制中, 将冗余的绳索组合采用绳力控制, 而其余绳索进行绳长控制. 因为不同的绳索组合可能导致不同的控制效果, 本研究旨在解决关节混合空间控制条件下, 力控绳索组合的选择问题. 以二冗余绳驱并联机器人为例, 通过向量空间基变换方法, 实现了冗余绳驱系统绳力在拉力索张力空间的表达. 基于拉力索张力空间, 计算了绳力控制绳索组合的对称最大误差带, 用于找到合适的绳索组合用于力控. 使用多体动力学仿真手段, 对关节混合空间的控制效果和对称最大误差带解析解计算方法的正确性进行了模拟验证. 在同时考虑绳长和绳力控制误差的条件下, 发现当选择不合适的绳索组合时, 绳力误差会被显著放大, 说明了本文针对绳力分布特性分析的意义. 本文提出的对称最大误差带概念同时也为关节混合空间控制策略下的绳力控制器设计提供指导.

     

  • 图  1  绳驱并联机器人的运动学模型示意图

    Figure  1.  Kinematic model of the CDPR

    图  2  不等式组的平行线几何模型解释

    Figure  2.  Explanation of the geometric model of parallel lines for the set of inequalities

    图  3  ${{ {\boldsymbol{T}}}_1} - {{ {\boldsymbol{T}}}_2}$空间内的绳力可行域, 黑色边界代表绳力可行域的边界, 正方形S1S2S3S4代表选择绳索组合1–2作为力控时的最大绳力误差区域

    Figure  3.  The TFR in T1T2 space, black line represents the boundaries of the TFR, and square S1S2S3S4 represents the maximum cable force error region for cable combination 1–2

    图  4  对称最大误差带的计算

    Figure  4.  Geometric interpretation for calculating the cable force error limit for two redundancies

    图  5  模拟案例中的两冗余度绳驱并联机器人, 数字代表绳索编号

    Figure  5.  Layout of the cable suspended robots. Numbers represent cable identifications

    图  6  力分布敏感度计算

    Figure  6.  Calculation of the force-distribution sensitivity

    图  7  采用绳索组合7–8力控时的对称最大误差带计算

    Figure  7.  Calculation of the CFEL when choosing the cable combination 7–8

    7  采用绳索组合7–8力控时的对称最大误差带计算(续)

    7.  Calculation of the CFEL when choosing the cable combination 7–8 (continued)

    图  8  ABAQUS/Explicit仿真模型

    Figure  8.  Simulation model via ABAQUS/Explicit

    图  9  末端平台的(a)位置, (b)速度和(c)加速度

    Figure  9.  Desired (a) position, (b) velocity and (c) acceleration profiles of the end-effector

    图  10  关节混合空间控制仿真模型

    Figure  10.  The hybrid-input control strategy

    图  11  (a)绳长控制随机误差(仅取一条绳索为例)和(b)两冗余条件下绳力控制随机误差

    Figure  11.  The control errors: (a) represents the length error (choose one cable as an example) and (b) represents the force errors for the chosen cable combination

    图  12  绳力分布曲线: (a)理想绳力分布, (b)采用绳索组合7–8力控时没有绳长控制误差的绳力分布, (c)采用绳索组合7–8力控时绳长误差和绳力误差共同作用的绳力分布, (d)采用绳索组合3–7力控时没有绳长控制误差的绳力分布, (e)采用绳索组合3–7力控时绳长误差和绳力误差共同作用的绳力分布

    Figure  12.  Force distribution: (a) ideal force distribution, (b) force distribution without cable length error when cable combination 7–8 is force-controlled, (c) force distribution with cable length error when cable combination 7–8 is force-controlled, (d) force distribution without cable length error when cable combination 3–7 is force-controlled and (e) force distribution with cable length error when cable combination 3–7 is force-controlled

    图  13  控制误差对整体绳力分布的影响: (a)采用绳索组合7–8进行力控和(b)采用绳索组合3–7(对照组)进行力控

    Figure  13.  Influence of the overall cable distribution of tensions: (a) and (b) represent cable combination 7–8 and cable combination 3–7 (force-controlled), respectively

    图  14  绳索组合4–8的力控灵敏系数分析: (a)表示绳索4的力控灵敏系数和(b)表示绳索8的力控灵敏系数

    Figure  14.  Calculation of FCS for cable combination 4-8: (a) and (b) represent the FCS of cable 4 and 8, respectively

    图  15  干扰力施加曲线

    Figure  15.  Force control errors

    图  16  绳力分布曲线

    Figure  16.  Cable tensions

    表  1  出绳点和结绳点的位置信息

    Table  1.   Position parameters of the cable robots

    CableThe positions of fixed points in the inertial frame O (X, Y, Z)The positions of distal points in the inertial frame O’ (x, y, z)
    pointX/mY/mZ/mpointx/my/mz/m
    1A11.992−0.1742.000B10.1075−0.16870
    2A21.9920.1742.000B20.10750.16870
    3A3−0.8451.8132.000B30.0923−0.17740
    4A4−1.1471.6382.000B4−0.19980.00870
    5A5−1.147−1.6382.000B5−0.1998−0.00870
    6A6−0.845−1.8132.000B60.0923−0.17740
    7A7−2.00002.000B7−0.1998−0.00870
    8A81.0001.7302.000B80.10750.16870
    下载: 导出CSV

    表  2  在[0 0 0]处绳索组合及其对应的FDS和CFEL值

    Table  2.   The FDS and CFEL values at the position [0 0 0]

    No.ijFDSCFEL Tmin = 1 NCFEL Tmin = 2 NCFEL Tmin = 3 NNo.ijFDSCFEL Tmin = 1 NCFEL Tmin = 2 NCFEL Tmin = 3 N
    11212.490.660.550.4515352.323.312.722.14
    2135.961.441.210.9716366.561.311.100.88
    3145.861.311.080.8517372.263.402.802.20
    41510.240.660.550.4318388.481.010.840.68
    516139.840.040.0360.02919456.511.180.930.76
    6176.491.170.970.7620466.911.110.920.72
    7187.211.191.000.80214710.240.750.620.49
    8236.191.391.160.9322482.373.623.032.43
    9242.472.742.251.77235612.840.530.440.35
    10252.922.061.701.3324579.320.830.680.53
    112612.790.650.540.4425582.233.743.122.51
    12272.372.952.431.9126677.910.970.800.63
    132810.230.840.700.5627687.891.090.910.73
    14342.952.622.161.7028780.705.964.913.86
    下载: 导出CSV
  • [1] Alp AB, Agrawal SK. Cable suspended robots: design, planning and control//2002 IEEE International Conference on Robotics and Automation, Washington, USA, 2002: 4275-4280
    [2] Sun C, Gao H, Liu Z, et al. Design and optimization of three-degree-of-freedom planar adaptive cable-driven parallel robots using the cable wrapping phenomenon. Mechanism and Machine Theory, 2021, 166: 104475 doi: 10.1016/j.mechmachtheory.2021.104475
    [3] 张耀军, 张玉茹, 戴晓伟. 基于工作空间最大化的平面柔索驱动并联机构优化设计. 机械工程学报, 2011, 47(13): 29-34 (Zhang Yaojun, Zhang Yuru, Dai Xiaowei. Optimal design for planar cable-driven parallel mechanism with respect to maximizing workspace. Journal of Mechanical Engineering, 2011, 47(13): 29-34 (in Chinese) doi: 10.3901/JME.2011.13.029
    [4] Zi B, Sun H, Zhang D, et al. Design, analysis and control of a winding hybrid-driven cable parallel manipulator. Robotics and Computer-Integrated Manufacturing, 2017, 48: 196-208 doi: 10.1016/j.rcim.2017.04.002
    [5] Wu Y, Cheng HH, Fingrut A, et al. CU-brick cable-driven robot for automated construction of complex brick structures: From simulation to hardware realization//2018 IEEE International Conference on Simulation, Modeling, and Programming for Aytonomous Robot. Brisbane, Australia, 2018: 166-173
    [6] Melenbrink N, Werfel J, Menges A. On-site autonomous construction robots: towards unsupervised building. Automation in Construction, 2020, 119: 103312 doi: 10.1016/j.autcon.2020.103312
    [7] 于金山, 李潇, 陶建国等. 面向在轨装配的八索并联机构构型设计与工作空间分析. 机械工程学报, 2021, 57(21): 1-10 (Yu Jinshan, Li Xiao, Tao Jianguo, et al. Configuration design and workspace analysis of parallel mechanism driven by eight cables for on-orbit assembly. Journal of Mechanical Engineering, 2021, 57(21): 1-10 (in Chinese) doi: 10.3901/JME.2021.21.001
    [8] Sun Y, Qiu Y, Liu P, et al. Dynamic modeling, workspace analysis and multi-objective structural optimization of the large-span high-speed cable-driven parallel camera robot. Machines, 2022, 10: 565 doi: 10.3390/machines10070565
    [9] Rosati G, Andreolli M, Biondi A, et al. Performance of cable suspended robots for upper limb rehabilitation//IEEE 10th International Conference on Rehabilitation Robotics. Noordwijk, Netherlands, 2007: 385-392
    [10] Bosscher P, Williams RL, Tummino M, et al. A concept for rapidly-deployable cable robot search and rescue systems//Asme International Design Engineering Technical Conferences & Computers & Information in Engineering Conference, California, USA. 2005: 589-598
    [11] 刘欣, 仇原鹰, 盛英. 风洞试验绳牵引冗余并联机器人的刚度增强与运动控制. 航空学报, 2009, 30(6): 1156-1164 (Liu Xin, Qiu Yuanying, Sheng Ying. Stiffness enhancement and motion control of a 6-DOF wire-driven parallel manipulator with redundant actuations for wind tunnels. Acta Aeronautica et Astronautica sinica, 2009, 30(6): 1156-1164 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.06.030
    [12] Qin Z, Liu Z, Liu Y, et al. Workspace analysis and optimal design of dual cable-suspended robots for construction. Mechanism and Machine Theory, 2022(171): 104763
    [13] Pott A. An improved force distribution algorithm for over-constrained cable-driven parallel robots//Marco Ceccarelli ed. Computational Kinematics. Springer, Dordrecht, 2014: 139-146
    [14] Gosselin C, Grenier M. On the determination of the force distribution in over constrained cable-driven parallel mechanisms. Meccanica, 2011, 46: 3-15
    [15] Gouttefarde M, Lamaury J, Reichret C, et al. A versatile tension distribution algorithm for n-DOF parallel robots driven by n+2 cables//IEEE Transactions on Robotics, 2015: 1444-1457
    [16] 宋达. 多冗余绳驱并联系统绳力分布算法研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Song Da. Research on cable tension distribution algorithm of multi-redundant cable-driven parallel system. [Master Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [17] Sun G, Liu Z, Gao H, et al. Direct method for tension feasible region calculation in multi-redundant cable-driven parallel robots using computational geometry. Mechanism and Machine Theory, 2021, 158: 104225
    [18] Gao H, Sun G, Liu Z, et al. Tension distribution algorithm based on graphics with high computational efficiency and robust optimization for two-redundant cable-driven parallel robots. Mechanism and Machine Theory, 2022(172): 104739
    [19] Ameri A, Molaei A, Khosravi MA. Nonlinear observer-based tension distribution for cable-driven parallel robots//Marc Gouttefarde, Tobias Bruckmann, Andreas Pott eds. Cable-Driven Parallel Robots. Cham: Springer, 2021: 105-116
    [20] Zhao T, Zi B, Qian S, et al. Algebraic method-based point-to-point trajectory planning of an under-constrained cable-suspended parallel robot with variable angle and height cable mast. Chinese Journal of Mechanical Engineering, 2020, 33(1): 1-18
    [21] Liu Z, Qin Z, Gao H, et al. Mass design method considering force control errors for two-redundant cable-suspended parallel robots. Mechanism and Machine Theory, 2022, 177: 105043
    [22] Khalilpour SA, Khorrambakht R, Taghirad HD, et al. Robust cascade control of a deployable cable-driven robot. Mechanical Systems and Signal Processing, 2019, 127: 513-530
    [23] Brycjmann T, Mikelsons L, Hiller M, et al. A new force calculation algorithm for tendon-based parallel manipulators//2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich, Switzerland, 2007: 1-6
    [24] Bouchard S, Gosselin C, A simple control strategy for over-constrained parallel cable. mechanisms//The Canadian Congress of Applied Mechanics (CANCAM). McGill University, Montreal, 2005
    [25] 杨继锋, 姚蕊, 陈捷. 索牵引弹体装填机器人的尺寸优化设计. 清华大学学报(自然科学版), 2021, 61(3): 217-223 (Yang Jifeng, Yao Rui, Chen Jie. Cable-driven projectile loading robot. Journal of Tsinghua University (Science and Technology), 2021, 61(3): 217-223 (in Chinese)
    [26] 姚蕊. 大跨度索并联机构力学特征及尺寸综合设计研究. [博士论文]. 北京: 清华大学, 2010

    Yao Rui. Study on tension characteristic and dimensional synthetic design of cable driven parallel manipulators with large span. [PhD Thesis]. Beijing: Tsinghua University, 2010 (in Chinese))
    [27] Mattioni V, Idà E, Carricato M. Force-distribution sensitivity to cable-tension errors: A preliminary investigation//Marc Gouttefarde, Tobias Bruckmann, Andreas Pott eds. Cable-Driven Parallel Robots. Springer, Cham, 2021: 129-141
    [28] 欧阳波, 尚伟伟. 6自由度绳索并联机器人力封闭工作空间的快速求解方法. 机械工程学报, 2013, 49(15): 34-41 (Ou Yangbo, Shang Weiwei. Efficient computation method of force-closure workspace for 6-DOF cable-driven parallel manipulators. Journal of Mechanical Engineering, 2013, 49(15): 34-41 (in Chinese) doi: 10.3901/JME.2013.15.034
    [29] 崔志伟, 唐晓强, 候森浩等. 索驱动并联机器人可控刚度特性. 清华大学学报(自然科学版), 2018, 58(2): 204-211 (Cui Zhiwei, Tang Xiaoqiang, Hou Senhao, et al. Characteristics of controllable stiffness for cable-driven parallel robots. Journal of Tsinghua University (Science and Technology), 2018, 58(2): 204-211 (in Chinese)
    [30] 秦志伟, 刘振, 孙国鹏等. 空间绳网旋转展开动力学分析. 宇航学报, 2021, 42(1): 41-49 (Qin Zhiwei, Liu Zhen, Sun Guopeng, et al. Dynamic analysis of spinning deployment of space web. Journal of Astronautics, 2021, 42(1): 41-49 (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.01.005
    [31] 游虹, 尚伟伟, 张彬等. 基于高速视觉的绳索牵引并联机器人轨迹跟踪控制. 机械工程学报, 2019, 55(5): 19-26 (You Hong, Shang Weiwei, Zhang Bin, et al. Trajectory tracking control of cable-driven parallel robots by using high-speed vision. Journal of Mechanical Engineering, 2019, 55(5): 19-26 (in Chinese) doi: 10.3901/JME.2019.05.019
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  124
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 录用日期:  2022-11-01
  • 网络出版日期:  2022-11-02

目录

    /

    返回文章
    返回