EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向双碳目标的建筑能源系统再认识

刘晓华 张涛 刘效辰 江亿

刘晓华, 张涛, 刘效辰, 江亿. 面向双碳目标的建筑能源系统再认识. 力学学报, 2023, 55(2): 435-445 doi: 10.6052/0459-1879-22-462
引用本文: 刘晓华, 张涛, 刘效辰, 江亿. 面向双碳目标的建筑能源系统再认识. 力学学报, 2023, 55(2): 435-445 doi: 10.6052/0459-1879-22-462
Liu Xiaohua, Zhang Tao, Liu Xiaochen, Jiang Yi. Rethinking of the building energy system towards the carbon neutral target. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 435-445 doi: 10.6052/0459-1879-22-462
Citation: Liu Xiaohua, Zhang Tao, Liu Xiaochen, Jiang Yi. Rethinking of the building energy system towards the carbon neutral target. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 435-445 doi: 10.6052/0459-1879-22-462

面向双碳目标的建筑能源系统再认识

doi: 10.6052/0459-1879-22-462
基金项目: 国家重点研发计划(2022YFC3802500), 国家自然科学基金(52278114, 52208112), 国家电网公司科技项目(5400-202219175A-1-1-ZN)和北京市科技计划(Z221100005222009)项目资助
详细信息
    通讯作者:

    刘晓华, 教授, 主要研究方向为零碳建筑能源系统, 光储直柔建筑. E-mail: lxh@tsinghua.edu.cn

  • 中图分类号: TU831.6

RETHINKING OF THE BUILDING ENERGY SYSTEM TOWARDS THE CARBON NEUTRAL TARGET

  • 摘要: 建筑领域是实现双碳目标的关键部门, 在双碳目标指引下建筑能源系统需要做出革新. 为此, 本研究对建筑能源系统的发展任务进行了深入探讨, 提出了面向双碳目标的建筑能源系统发展方向: 传统的建筑能源系统以满足建筑自身冷、热、电等基本能源需求为主; 双碳目标下, 建筑能源系统需要从建筑节能向建筑低碳的新目标转变, 需要在降低建筑本体能源需求、全面电气化、提升建筑能源系统能效水平、实现灵活可调并成为具有柔性调节能力的能源系统可调负载等方面做出变革, 需要从单纯能源系统的消费者转变为集能源生产、消费、调蓄于一体的复合体. 以构建低碳建筑能源系统为目标, 对建筑能源系统的研究趋势进行了展望: 需要进一步认识建筑能源、建筑环境营造的需求从而更好地理解建筑能源系统的基本要求, 需要建筑与交通、电力等领域进一步融合, 需要从单体建筑向区域建筑、城市等多个尺度上以建筑为载体构建城乡新型能源系统. 本研究可为建筑能源系统如何实现自身角色转变、加快实现双碳目标下的能源系统变革提供有益参考.

     

  • 图  1  建筑能源需求及主要供给方式

    Figure  1.  Building energy demand and main supply mode

    图  2  由建筑节能向建筑低碳目标转变

    Figure  2.  From building energy saving to low-carbon/zero carbon building

    图  3  低碳建筑能源系统的构建原则

    Figure  3.  Construction principles for low-carbon building energy systems

    图  4  提高建筑本体性能, 降低能源需求

    Figure  4.  Improving building performance to reduce the demand for building energy system

    图  5  降低品位需求,提高系统能效

    Figure  5.  Improving efficiency through lowing the requirements for temperature grade

    图  6  建筑中可利用的柔性资源

    Figure  6.  Available flexible resources in buildings

    图  7  建筑具有“源储网荷”多重特征

    Figure  7.  Building with characteristics of “source, net, load, storage”

  • [1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2022. 北京: 中国建筑工业出版社, 2022

    Building Energy Research Center of Tsinghua University. China Building Energy Conservation Annual Development Research Report 2022. Beijing: China Building Industry Press, 2022 (in Chinese)
    [2] 周孝信, 赵强, 张玉琼. “双碳”目标下我国能源电力系统发展前景和关键技术. 中国电力企业管理, 2021, 31(11): 14-17 (Zhou Xiaoxin, Zhao Qiang, Zhang Yuqiong. Development prospect and key technologies of energy power system in China under double carbon target. China Power Enterprise Management, 2021, 31(11): 14-17 (in Chinese)
    [3] 舒印彪, 陈国平, 贺静波等. 构建以新能源为主体的新型电力系统框架研究. 中国工程科学, 2021, 23(6): 61-69 (Shu Yinbiao, Chen Guoping, He Jingbo, et al. Building a new electric power system based on new energy sources. Chinese Engineering Science, 2021, 23(6): 61-69 (in Chinese) doi: 10.15302/J-SSCAE-2021.06.003
    [4] 刘晓华, 谢晓云, 张涛等. 建筑热湿环境营造过程的热学原理. 北京: 中国建筑工业出版社, 2016

    Liu Xiaohua, Xie Xiaoyun, Zhang Tao, et al. Thermologicial Principle of Indoor Thermal Built Environment. Beijing: China Building Industry Press, 2016 (in Chinese)
    [5] 胡姗, 张洋, 燕达等. 中国建筑领域能耗与碳排放的界定与核算. 建筑科学, 2020, 36(11): 288-297 (Hu Shan, Zhang Yang, Yan Da, et al. Definition and modelling of energy consumption and carbon emissions in china’s building sector. Building Science, 2020, 36(11): 288-297 (in Chinese)
    [6] 刘晓华, 张涛, 刘效辰. 如何描述建筑在未来新型电力系统中的基本特征?——现状与展望. 暖通空调, 出版中, https://kns.cnki.net/kcms/detail/11.2832.TU.20220818.1421.002.html

    Liu Xiaohua, Zhang Tao, Liu Xiaochen. How to describe the basic characteristics of the building in future power system−status and prospect. HV & AC Journal, in press, https://kns.cnki.net/kcms/detail/11.2832.TU.20220818.1421.002.html (in Chinese)
    [7] 刘晓华, 张涛, 刘效辰等. “光储直柔”建筑新型能源系统发展现状与研究展望. 暖通空调, 2022, 52(8): 1-9, 82 (Liu Xiaohua, Zhang Tao, Liu Xiaochen, et al. Development statuses and research prospects of PEDF photovoltaics, energy storage, direct current and flexibility building energy systems. HV & AC Journal, 2022, 52(8): 1-9, 82 (in Chinese)
    [8] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2018. 北京: 中国建筑工业出版社, 2018

    Building Energy Research Center of Tsinghua University. China Building Energy Conservation Annual Development Research Report 2018. Beijing: China Building Industry Press, 2018 (in Chinese)
    [9] 杜晨秋, 喻伟, 李百战等. 重庆住宅人员空调使用行为特点及评价. 建筑科学, 2020, 36(10): 12-19 (Du Chenqiu, Yu Wei, Li Baizhan, et al. Evaluation of occupant behavior on annual air conditioning use in residential buildings in Chongqing. Building Science, 2020, 36(10): 12-19 (in Chinese) doi: 10.13614/j.cnki.11-1962/tu.2020.10.02
    [10] Jiang HC, Yao RM, Han SY, et al. How do urban residents use energy for winter heating at home? A large-scale survey in the hot summer and cold winter climate zone in the Yangtze River region. Energy and Buildings, 2020, 223: 110131 doi: 10.1016/j.enbuild.2020.110131
    [11] 梁传志, 侯隆澍, 刘幼农等. 北方采暖地区既有居住建筑供热计量及节能改造工作进展与思考. 建设科技, 2015, 9: 12-16 (Liang Chuanzhi, Hou Longshu, Liu Younong, et al. Effect and suggestion on heat metering and energy saving renovation of existing residential buildings in northern heating area. Construction Science and Technology, 2015, 9: 12-16 (in Chinese) doi: 10.16116/j.cnki.jskj.2015.09.001
    [12] Liu XC, Zhang T, Liu XH, et al. Outdoor air supply in winter for large-space airport terminals: air infiltration vs. mechanical outdoor air. Building and Environment, 2021, 190: 107545
    [13] Lin L, Liu XH, Zhang T. Performance investigation of heating terminals in a railway depot: On-site measurement and CFD simulation. Journal of Building Engineering, 2020, 32: 101818 doi: 10.1016/j.jobe.2020.101818
    [14] Liu XC, Zhang T, Liu XH. Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration. Energy, 2021, 215: 119175
    [15] Liu XC, Liu XH, Zhang T, et al. Winter air infiltration induced by combined buoyancy and wind forces in large-space buildings. Journal of Wind Engineering & Industrial Aerodynamics, 2021, 210: 104501
    [16] Smith G, Gentle A. Radiative cooling: Energy savings from the sky. Nature Energy, 2017, 2: 17142 doi: 10.1038/nenergy.2017.142
    [17] Liu J, Zhang J, Tang H, et al. Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting. Nano Energy, 2021, 81: 105611 doi: 10.1016/j.nanoen.2020.105611
    [18] Yin JW, Liu XH, Guan BW, et al. Performance and improvement of cleanroom environment control system related to cold-heat offset in clean semiconductor fabs. Energy & Buildings, 2020, 224: 110294
    [19] 李伟阳. “电热协同网”是城市节能降碳的现实必然选择. 中国能源报, 2021-11-8, 第025版

    Li Weiyang. Electric and heat collaborative network is the inevitable choice of urban energy saving and carbon reduction. China Energy News, 2021-11-8: 25 (in Chinese)
    [20] 李楠, 黄礼玲, 张海宁等. 考虑多能需求响应的电热互联系统协同调度优化模型. 数学的实践与认识, 2020, 50(5): 142-154 (Li Nan, Huang Liling, Zhang Haining, et al. Collaborative scheduling optimization model for electric-heating interconnect systems considering multiple demand response. Mathematics in Practice and Theory, 2020, 50(5): 142-154 (in Chinese)
    [21] 贺明飞, 王志峰, 原郭丰等. 水体型太阳能跨季节储热技术简介. 建筑节能, 2021, 49(10): 66-70 (He Mingfei, Wang Zhifeng, Yuan Guofeng, et al. A technical introduction of water pit for long-term seasonal solar thermal energy storage. Building Energy Efficiency, 2021, 49(10): 66-70 (in Chinese)
    [22] Liu ZJ, Liu YW, He BJ, et al. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renewable and Sustainable Energy Reviews, 2019, 101: 329-345 doi: 10.1016/j.rser.2018.11.023
    [23] 杨灵艳, 徐伟, 周权等. 热泵应用现状及发展障碍分析. 建设科技, 2022, 9: 96-100 (Yang Lingyan, Xu Wei, Zhou Quan, et al. Analysis of application status and development obstacle of heat pump. Construction Science and Technology, 2022, 9: 96-100 (in Chinese) doi: 10.16116/j.cnki.jskj.2022.09.021
    [24] 田星宇. 高温蒸汽热泵的动态建模与预测控制研究. [硕士论文]. 南京: 东南大学, 2021

    Tian Xingyu. Research on dynamic modeling and predictive control of high temperature steam heat pump. [Master Thesis]. Nanjing: Southeast University, 2021 (in Chinese)
    [25] 员东照. 高温离心式冷水机组在数据中心的应用探讨. 制冷与空调, 2015, 15(9): 91-93 (Yuan Dongzhao. Discussion of the high temperature centrifugal chiller’s application in data center. Refrigeration and Air Conditioning, 2015, 15(9): 91-93 (in Chinese)
    [26] 田旭东, 刘华, 张治平等. 高温离心式冷水机组及其特性研究. 流体机械, 2009, 37(10): 53-56 (Tian Xudong, Liu Hua, Zhang Zhiping, et al. Research on centrifugal chiller which has high-leaving temperature and its performance. Fluid Machinery, 2009, 37(10): 53-56 (in Chinese) doi: 10.3969/j.issn.1005-0329.2009.10.013
    [27] Behzadi A, Holmberg S, Duwig C, et al. Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review. Renewable and Sustainable Energy Reviews, 2022, 166: 112625 doi: 10.1016/j.rser.2022.112625
    [28] Zhang T, Liu XH, Jiang Y. Development of temperature and humidity independent control (THIC) air-conditioning systems in China—A review. Renewable & Sustainable Energy Reviews, 2014, 29: 793-803
    [29] 谭海阳, 屈国伦, 何恒钊等. 基于高效制冷机房系统能效分级评价的冷源系统模型构建. 暖通空调, 2021, 51(11): 33-38 (Tan Haiyang, Qu Guolun, He Hengzhao et al. Construction of cold source system model based on energy efficiency grading assessment of high-efficiency chiller plant systems. HV & AC Journal, 2021, 51(11): 33-38 (in Chinese)
    [30] Amayri M, Silva CS, Pombeiro HF. lexibility characterization of residential electricity consumption: A machine learning approach. Sustainable Energy Grids & Networks, 2022, 32: 100801
    [31] Zheng Z, Pan J, Huang GS, et al. A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control. Applied Energy, 2022, 323: 119591 doi: 10.1016/j.apenergy.2022.119591
    [32] 何雅玲. 热储能技术在能源革命中的重要作用. 科技导报, 2022, 40(4): 1-2 (He Yaling. Thermal energy storage technology plays an important role in energy revolution. Science &Technology Review, 2022, 40(4): 1-2 (in Chinese)
    [33] 张利, 邓慧姝, 梅笑寒等. 城市人因工程学: 一种关于人的空间体验质量的设计科学. 科学通报, 2022, 67: 1744-1756 (Zhang Li, Deng Huishu, Mei Xiaohan, et al. Urban Ergonomics: A design science on spatial experience quality. Chinese Science Bulletin, 2022, 67: 1744-1756 (in Chinese) doi: 10.1360/TB-2021-1241
    [34] 曹世杰, 冯壮波, 王俊淇等. 面向人因工程学的公共建筑空气环境安全运维与控制. 科学通报, 2022, 67: 1783-1795 (Cao Shijie, Feng Zhuangbo, Wang Junqi, et al. Ergonomics-oriented operation, maintenance and control of indoor air environment for public buildings. Chinese Science Bulletin, 2022, 67: 1783-1795 (in Chinese) doi: 10.1360/TB-2021-1024
    [35] 江亿. “光储直柔”——助力实现零碳电力的新型建筑配电系统. 暖通空调, 2021, 51(10): 1-12 (Jiang Yi. PSDF (Photovoltaic, Storage, DC, Flexible)—a new type of building power distribution system for zero carbon power system. HV &AC Journal, 2021, 51(10): 1-12 (in Chinese)
  • 加载中
图(7)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  39
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 录用日期:  2022-10-29
  • 网络出版日期:  2022-10-30

目录

    /

    返回文章
    返回