EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双通道旋转输流管临界流速和振动模态分析

张博 郑昊楷 孙东生 丁虎 陈立群

张博, 郑昊楷, 孙东生, 丁虎, 陈立群. 双通道旋转输流管临界流速和振动模态分析. 力学学报, 2023, 55(1): 182-191 doi: 10.6052/0459-1879-22-456
引用本文: 张博, 郑昊楷, 孙东生, 丁虎, 陈立群. 双通道旋转输流管临界流速和振动模态分析. 力学学报, 2023, 55(1): 182-191 doi: 10.6052/0459-1879-22-456
Zhang Bo, Zheng Haokai, Sun Dongsheng, Ding Hu, Chen Liqun. Theoretical analysis on the critical flow velocity and vibration mode of a twin-channel rotating pipe. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 182-191 doi: 10.6052/0459-1879-22-456
Citation: Zhang Bo, Zheng Haokai, Sun Dongsheng, Ding Hu, Chen Liqun. Theoretical analysis on the critical flow velocity and vibration mode of a twin-channel rotating pipe. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 182-191 doi: 10.6052/0459-1879-22-456

双通道旋转输流管临界流速和振动模态分析

doi: 10.6052/0459-1879-22-456
基金项目: 陕西省自然科学基金(2022JQ-019), 上海市教委创新项目(2017-01-07-00-09-E00019) 和陕西省国家级大学生创新创业训练计划 (G202210710094)资助
详细信息
    作者简介:

    通讯作者: 张博, 副教授, 主要研究方向为非线性动力学与振动控制. E-mail: zhang_bo@chd.edu.cn

    通讯作者:

    陈立群, 教授, 主要研究方向为非线性动力学和振动控制. E-mail: lqchen@shu.edu.cn

  • 中图分类号: O321

THEORETICAL ANALYSIS ON THE CRITICAL FLOW VELOCITY AND VIBRATION MODE OF A TWIN-CHANNEL ROTATING PIPE

  • 摘要: 旋转叶片是航空发动机重要零件之一, 服役条件十分恶劣, 常常因振动过量导致其失效. 为了合理设计含冷却通道的叶片, 保证其可靠性与安全性, 需对含冷却通道的叶片的振动特性进行研究. 基于Euler-Bernoulli梁理论, 将叶片简化为含两通道的悬臂旋转输流管, 考虑了通道轴线偏移量对流体动能的影响, 采用Lagrange原理结合假设模态法建立包含双陀螺效应的运动控制方程, 采用降阶扩维的方法求解系统特征值. 研究两通道模型的流速比、转速和长细比等对前3阶特征根曲线影响. 将文章模型退化为简支单通道输流管, 与文献报道结果进行对比, 部分验证建模方法的正确性. 研究发现: 在相同的管道截面积下, 两通道模型的临界流速值大于单通道模型的; 旋转运动引入的陀螺效应会使得第2, 3阶特征根轨迹发生绕圈现象, 并多次穿越虚轴; 随着长细比的增大, 系统会表现出类似非旋转的悬臂输流管的动力学行为; 系统的横向位移模态响应呈现出行波特性, 且在不同参数组合下, 阻尼因子对前3阶模态产生不同的增强或减弱作用.

     

  • 图  1  含两通道的旋转输流管

    Figure  1.  Sketch of a rotating cantilever double channel pipe

    图  2  不同试探函数个数下前3阶特征根轨迹曲线 (Ω* = 0)

    Figure  2.  The trajectories of the first three eigenvalues for different trail function numbers (Ω* = 0)

    图  3  两端简支的单通道输流管系统的前两阶特征根轨迹

    Figure  3.  The trajectories of the first two eigenvalues for simple supported flow pipe

    图  4  单、双通道模型的临界流速随转速的变化曲线

    Figure  4.  The curves of critical flow velocity with rotating speed for the single/twin-channel models

    图  5  不同流速比下前3阶特征根轨迹(ucr = u2, Ω* = 5)

    Figure  5.  The trajectories of the first three eigenvalues for different velocity ratios (ucr = u2, Ω* = 5)

    图  6  不同转速下前3阶特征根轨迹曲线(κ = 35)

    Figure  6.  The trajectories of the first three eigenvalues for different rotating speeds (κ = 35)

    图  7  不同长细比下前3阶特征根轨迹曲线(Ω* = 5)

    Figure  7.  The trajectories of the first three eigenvalues for different slenderness ratios (Ω* = 5)

    图  8  相位变化对前3阶模态响应的影响(u1 = u2 = 8, Ω* = 10)

    Figure  8.  The curves of the first three modal responses for different phase changes (u1 = u2 = 8, Ω* = 10)

    图  9  不同流速和转速下阻尼因子对前3阶模态响应的影响

    Figure  9.  The effects of damping factor on the first three mode responses for different flow rates and rotating speeds

    表  1  两端简支单通道输流管系统的前两阶临界流速对比

    Table  1.   Comparison of the first two critical flow velocities for simply supported flow pipe

    Critical flow vewaryResultRef. [43]
    first3.143.14
    second6.286.28
    下载: 导出CSV
  • [1] 张伟, 冯志青, 曹东兴. 航空发动机叶片非线性动力学分析. 动力学与控制学报, 2012, 10(3): 213-221 (Zhang Wei, Feng Zhiqing, Cao Dongxing. Analysis on nonlinear dynamics of the aero-engine blade. Journal of Dynamics and Control, 2012, 10(3): 213-221 (in Chinese) doi: 10.3969/j.issn.1672-6553.2012.03.005
    [2] 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望. 航空制造技术, 2021, 64(8): 22-28 (Zhuo Yimin, Chen Yuanhang, Yang Chunli. Research status and prospect of welding repair technology for aero-engine blades. Aeronautical Manufacturing Technology, 2021, 64(8): 22-28 (in Chinese)
    [3] 陈振林, 陈志同, 朱正清等. 基于逆向工程的航空发动机叶片再制造修复方法研究. 航空制造技术, 2020, 63(Z2): 80-86 (Chen Zhenlin, Chen Zhitong, Zhu Zhengqing, et al. Research on remanufacturing and repairing method of aero engine blade based on reverse engineering. Aeronautical Manufacturing Technology, 2020, 63(Z2): 80-86 (in Chinese)
    [4] 徐涛, 王强, 唐洪飞. 气冷涡轮叶片振动特性分析. 机械设计与制造工程, 2022, 51(3): 63-66 (Xu Tao, Wang Qiang, Tang Hongfei. Vibration characteristics analysis of air – cooled turbine balades. Machine Design and Manufacturing Engineering, 2022, 51(3): 63-66 (in Chinese) doi: 10.3969/j.issn.2095-509X.2022.03.013
    [5] Carnegie W. Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods. Journal of Mechanical Engineering Sciences, 1959, 1(3): 235-240 doi: 10.1243/JMES_JOUR_1959_001_028_02
    [6] 杜超凡, 郑燕龙, 章定国等. 基于径向基点插值法的旋转Mindlin板高次刚柔耦合动力学模型. 力学学报, 2022, 54(1): 119-133 (Du Chaofan, Zheng Yanlong, Zhang Dingguo, et al. High-order rigid-flexible coupled dynamic model of rotating mindlin plate based on radial point interpolation method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 119-133 (in Chinese) doi: 10.6052/0459-1879-21-362
    [7] Wei Z, Li L, Zhao F. First-order approximate rigid-flexible coupled dynamics analysis of a simple aero-engine blade model with dynamic stiffening effect. Journal of Mechanical Science and Technology, 2021, 35(7): 2997-3003
    [8] Yoo HH, Chung J. Dynamics of rectangular plates undergoing prescribed overall motion. Journal of Sound and Vibration, 2001, 239(1): 123-137
    [9] 刘又午, 王建明, 张大钧等. 作大范围运动的矩形板动力分析. 振动与冲击, 1998, 17(1): 38-43 (Liu Youwu, Wang Jianming, Zhang Dajun, et al. Dynamic analysis of rectangular plates undergoing large overall motion. Journal of Vibration and Shock, 1998, 17(1): 38-43 (in Chinese)
    [10] Li L, Zhang DG. Free vibration analysis of rotating functionally graded rectangular plates. Composite Structures, 2016, 136: 493-504
    [11] Vu TV, Nguyen NH, Khosravifard A, et al. A simple FSDT-based meshfree method for analysis of functionally graded plates. Engineering Analysis with Boundary Elements, 2017, 79: 1-12
    [12] 赵飞云, 洪嘉振, 刘锦阳等. 高速旋转柔性矩形薄板的动力学建模和近似算法. 振动工程学报, 2006, 19(3): 416-421 (Zhao Feiyun, Hong Jiazhen, Liu Jinyang, et al. Dynamic modeling and modal truncation approach for a high-speed rotating thin elastic rectangular plate. Journal of Vibration Engineering, 2006, 19(3): 416-421 (in Chinese) doi: 10.3969/j.issn.1004-4523.2006.03.023
    [13] 郑彤, 章定国, 廖连芳等. 航空发动机叶片刚柔耦合动力学分析. 机械工程学报, 2014, 50(23): 42-49 (Zheng Tong, Zhang Dingguo, Liao Lianfang, et al. Rigid-flexible coupling dynamic analysis of aero-engine blades. Journal of Mechanical Engineering, 2014, 50(23): 42-49 (in Chinese) doi: 10.3901/JME.2014.23.042
    [14] 蒋建平, 李东旭. 大范围运动板动力刚化分析. 动力学与控制学报, 2005, 3(1): 10-14 (Jiang Jianping, Li Dongxu. Dynamic analysis of rectangular plate undergoing overall motion. Journal of Dynamics and Control, 2005, 3(1): 10-14 (in Chinese) doi: 10.3969/j.issn.1672-6553.2005.01.003
    [15] Paidoussis MP. Fluid-Structure Interactions (Slender Structures and Axial Flow). Vol I. London: Academic Press, 1998
    [16] 赵江, 俞建峰, 楼琦. 基于流固耦合的T型管振动特性分析. 振动与冲击, 2019, 38(22): 117-123 (Zhao Jiang, Yu Jianfeng, Lou Qi. Modal analysis of T-shaped pipes based on a fluid-solid interaction model. Journal of Vibration and Shock, 2019, 38(22): 117-123 (in Chinese)
    [17] 刘辉, 邓旭辉, 赵珂等. 不同约束条件对深海采矿输送管道动力学的影响. 应用力学学报, 2022, 39(3): 506-515 (Liu Hui, Deng Xuhui, Zhao Ke, et al. Effects of different constraints on the dynamics of pipeline in deep sea mining. Chinese Journal of Applied Mechanics, 2022, 39(3): 506-515 (in Chinese) doi: 10.11776/j.issn.1000-4939.2022.03.011
    [18] 颜雄, 魏莎, 毛晓晔等. 两端弹性支承输流管道固有特性研究. 力学学报, 2022, 54(5): 1341-1352 (Yan Xiong, Wei Sha, Mao Xiaoye, et al. Study on natural characteristics of fluid-conveying pipes with elastic supports at both ends. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352 (in Chinese)
    [19] 易浩然, 周坤, 代胡亮等. 含集中质量悬臂输流管的稳定性与模态演化特性研究. 力学学报, 2020, 52(6): 1800-1810 (Yi Haoran, Zhou Kun, Dai Huliang, et al. Stability and mode evolution characteristics of a cantilevered fluid-conveying pipe attached with the lumped mass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810 (in Chinese) doi: 10.6052/0459-1879-20-280
    [20] 徐鉴, 杨前彪. 输液管模型及其非线性动力学近期研究进展. 力学进展, 2004, 34(2): 182-194 (Xu Jian, Yang Qianbiao. Recent development on models and nonlinear dynamics of pipes conveying fluid. Advances in Mechanics, 2004, 34(2): 182-194 (in Chinese) doi: 10.3321/j.issn:1000-0992.2004.02.003
    [21] Nikolić M, Rajković M. Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends. Journal of Fluids and Structures, 2006, 22(2): 173-195
    [22] Chen SS. Dynamic stability of tube conveying fluid. Journal of the Engineering Mechanics Division, 1971, 97(5): 1469-1485
    [23] Paidoussis MP. Flow-induced instabilities of cylindrical structures. Applied Mechanics Reviews, 1987, 40(2): 163-175
    [24] Rousselet J, Herrmann G. Flutter of articulated pipes at finite amplitude. Journal of Applied Mechanics, 1977, 44(1): 154-158
    [25] Lundgren TS, Sethna PR, Bajaj AK. Stability boundaries for flow induced motions of tubes with an inclined terminal nozzle. Journal of Sound and Vibration, 1979, 64(4): 553-571
    [26] Bajaj AK, Sethna PR. Bifurcations in three-dimensional motions of articulated tubes, part 1:linear systems and symmetry. Journal of Applied Mechanics, 1982, 49(3): 612-618
    [27] Bajaj AK, Sethna PR. Effect of symmetry-breaking perturbations on flow-induced oscillations in tubes. Journal of Fluids and Structures, 1991, 5(6): 651-679
    [28] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅰ). 应用数学和力学, 2006, 27(7): 819-824 (Xu Jian, Yang Qianbiao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid (I). Applied Mathematics and Mechanics, 2006, 27(7): 819-824 (in Chinese) doi: 10.3321/j.issn:1000-0887.2006.07.009
    [29] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ). 应用数学和力学, 2006, 27(7): 825-832

    Xu Jian, Yang Qianbiao, Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid (II). Applied Mathematics and Mechanics, 2006, 27(7): 825-832 (in Chinese)
    [30] Paidoussis MP, Li GX. Pipes conveying fluid: A model dynamical problem. Journal of Fluids and Structures, 1993, 7(2): 137-204
    [31] 黄玉盈, 钱勤, 徐鉴等. 输液管的非线性振动、分叉与混沌——现状与展望. 力学进展, 1998, 28(1): 30-42 (Huang Yuying, Qian Qin, Xu Jian, et al. Advances and trends of nonlinear dynamics of pipes conveying fluid. Advances in Mechanics, 1998, 28(1): 30-42 (in Chinese) doi: 10.3321/j.issn:1000-0992.1998.01.003
    [32] Ibrahim RA. Overview of mechanics of pipes conveying fluids—part I: fundamental studies. Journal of Pressure Vessel Technology, 2010, 132(3): 034001
    [33] Ibrahim RA. Mechanics of pipes conveying fluids—part II: applications and fluid elastic problems. Journal of Pressure Vessel Technology, 2011, 133(2): 024001
    [34] 王乙坤, 王琳. 分布式运动约束下悬臂输液管的参数共振研究. 力学学报, 2019, 51(2): 558-568 (Wang Yikun, Wang Lin. Parametric resonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 558-568 (in Chinese) doi: 10.6052/0459-1879-18-295
    [35] Wang YJ, Zhang QC, Wang W, et al. In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends. Applied Mathematics and Mechanics (English Edition) , 2019, 40(8): 1119-1134
    [36] 宫亚飞, 甄亚欣. 含有初始弯曲的功能梯度输流管的平衡分岔分析. 振动与冲击, 2022, 41(11): 27-32 (Gong Yafei, Zhen Yaxin. Equilibrium bifurcation analysis of functionally graded pipe conveying fluid with initial curvature. Journal of Vibration and Shock, 2022, 41(11): 27-32 (in Chinese) doi: 10.13465/j.cnki.jvs.2022.11.004
    [37] Oh Y, Yoo HH. Thermo-elastodynamic coupled model to obtain natural frequency and stretch characteristics of a rotating blade with a cooling passage. International Journal of Mechanical Sciences, 2020, 165: 105194
    [38] 张博, 史天姿, 张贻林等. 旋转输液管动力稳定性理论分析. 应用数学和力学, 2022, 43(2): 166-175 (Zhang Bo, Shi Tianzi, Zhang Yilin, et al. Theoretical analysis on free vibration of a rotating pipe conveying fluid. Applied Mathematics and Mechanics, 2022, 43(2): 166-175 (in Chinese)
    [39] 刘言明, 李东明, 牛夕莹等. 基于逆向工程的涡轮冷却叶片三维建模及数值模拟. 热能动力工程, 2021, 36(6): 57-62 (Liu Yanming, Li Dongming, Niu Xiying, et al. Three-dimensional modeling and numerical simulation of turbine cooling blades based on reverse engineering. Journal of Engineering for Thermal Energy and Power, 2021, 36(6): 57-62 (in Chinese) doi: 10.16146/j.cnki.rndlgc.2021.06.009
    [40] Han JC, Huh M. Recent studies in turbine blade internal cooling heat transfer. Heat Transfer Research, 2010, 41(8): 803-828
    [41] Chiu YJ, Chen D. Z The coupled vibration in a rotating multi-disk rotor system. International Journal of Mechanical Sciences, 2011, 53(1): 1-10
    [42] Benjamin TB. Dynamics of a system of articulated pipes conveying fluid. I. theory. Proceedings of the Royal Society A, 1961, 261(1307): 457-486
    [43] Paidoussis MP, Issid NT. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration, 1974, 33(3): 267-294
    [44] Yoo H, Shin SH. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 1998, 212(5): 807-828
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  132
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-19
  • 刊出日期:  2023-01-04

目录

    /

    返回文章
    返回