THEORETICAL ANALYSIS ON THE CRITICAL FLOW VELOCITY AND VIBRATION MODE OF A TWIN-CHANNEL ROTATING PIPE
-
摘要: 旋转叶片是航空发动机重要零件之一, 服役条件十分恶劣, 常常因振动过量导致其失效. 为了合理设计含冷却通道的叶片, 保证其可靠性与安全性, 需对含冷却通道的叶片的振动特性进行研究. 基于Euler-Bernoulli梁理论, 将叶片简化为含两通道的悬臂旋转输流管, 考虑了通道轴线偏移量对流体动能的影响, 采用Lagrange原理结合假设模态法建立包含双陀螺效应的运动控制方程, 采用降阶扩维的方法求解系统特征值. 研究两通道模型的流速比、转速和长细比等对前3阶特征根曲线影响. 将文章模型退化为简支单通道输流管, 与文献报道结果进行对比, 部分验证建模方法的正确性. 研究发现: 在相同的管道截面积下, 两通道模型的临界流速值大于单通道模型的; 旋转运动引入的陀螺效应会使得第2, 3阶特征根轨迹发生绕圈现象, 并多次穿越虚轴; 随着长细比的增大, 系统会表现出类似非旋转的悬臂输流管的动力学行为; 系统的横向位移模态响应呈现出行波特性, 且在不同参数组合下, 阻尼因子对前3阶模态产生不同的增强或减弱作用.Abstract: Rotating blade is an essential part of aero-engine. It serves in harsh conditions. Its failure is often caused by excessive vibration. To design the blade properly and to ensure the reliability and safety, the vibration characteristics of the blade need to be revealed. The blade is simplified as a cantilever rotating pipe with double cooling channels based on the Euler-Bernoulli beam theory. The influences of channel axis offset on fluid kinetic energy are considered in the present study. The motion governing equation of the blade is established including the bi-gyroscopic effects with the combination of Lagrange principle and assumed mode method. The method of order reduction and dimension expansion is applied to solve the eigenvalue of the system. The influences of the fluid velocity ratio, rotating speed, slenderness et al. on the first three order eigenvalue curves are studied. The present model degenerates into a simply supported pipe conveying fluid with a single channel to compare with the results reported in literature. The correctness of the present modeling method is verified, partly. The velocity ratio of two channels has great influence on the first three order critical flow velocity values. For a given value of the cross-section area of the cooling passage, the critical flow velocity of the twin-channel model is higher than the single-channel model. A circling phenomenon is introduced to on the second and the third eigenvalue curves by the gyroscopic effect due to the rotating motion. The second and the third eigenvalue curves travel through the imaginary axis several times. With the increase of the slenderness ratio, the system’s dynamic behaviors are similar to the non-rotating cantilever pipe. Moreover, due to the gyroscopic effect, the modal response of the lateral displacement presents a traveling wave property. And the damping factor has different enhancement or weakening effects on the first three modes under different parameter conditions.
-
Key words:
- rotating fluid conveying pipe /
- assumed mode method /
- complex mode /
- stability /
- critical flow velocity
-
表 1 两端简支单通道输流管系统的前两阶临界流速对比
Table 1. Comparison of the first two critical flow velocities for simply supported flow pipe
Critical flow vewary Result Ref. [43] first 3.14 3.14 second 6.28 6.28 -
[1] 张伟, 冯志青, 曹东兴. 航空发动机叶片非线性动力学分析. 动力学与控制学报, 2012, 10(3): 213-221 (Zhang Wei, Feng Zhiqing, Cao Dongxing. Analysis on nonlinear dynamics of the aero-engine blade. Journal of Dynamics and Control, 2012, 10(3): 213-221 (in Chinese) doi: 10.3969/j.issn.1672-6553.2012.03.005 [2] 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望. 航空制造技术, 2021, 64(8): 22-28 (Zhuo Yimin, Chen Yuanhang, Yang Chunli. Research status and prospect of welding repair technology for aero-engine blades. Aeronautical Manufacturing Technology, 2021, 64(8): 22-28 (in Chinese) [3] 陈振林, 陈志同, 朱正清等. 基于逆向工程的航空发动机叶片再制造修复方法研究. 航空制造技术, 2020, 63(Z2): 80-86 (Chen Zhenlin, Chen Zhitong, Zhu Zhengqing, et al. Research on remanufacturing and repairing method of aero engine blade based on reverse engineering. Aeronautical Manufacturing Technology, 2020, 63(Z2): 80-86 (in Chinese) [4] 徐涛, 王强, 唐洪飞. 气冷涡轮叶片振动特性分析. 机械设计与制造工程, 2022, 51(3): 63-66 (Xu Tao, Wang Qiang, Tang Hongfei. Vibration characteristics analysis of air – cooled turbine balades. Machine Design and Manufacturing Engineering, 2022, 51(3): 63-66 (in Chinese) doi: 10.3969/j.issn.2095-509X.2022.03.013 [5] Carnegie W. Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods. Journal of Mechanical Engineering Sciences, 1959, 1(3): 235-240 doi: 10.1243/JMES_JOUR_1959_001_028_02 [6] 杜超凡, 郑燕龙, 章定国等. 基于径向基点插值法的旋转Mindlin板高次刚柔耦合动力学模型. 力学学报, 2022, 54(1): 119-133 (Du Chaofan, Zheng Yanlong, Zhang Dingguo, et al. High-order rigid-flexible coupled dynamic model of rotating mindlin plate based on radial point interpolation method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 119-133 (in Chinese) doi: 10.6052/0459-1879-21-362 [7] Wei Z, Li L, Zhao F. First-order approximate rigid-flexible coupled dynamics analysis of a simple aero-engine blade model with dynamic stiffening effect. Journal of Mechanical Science and Technology, 2021, 35(7): 2997-3003 [8] Yoo HH, Chung J. Dynamics of rectangular plates undergoing prescribed overall motion. Journal of Sound and Vibration, 2001, 239(1): 123-137 [9] 刘又午, 王建明, 张大钧等. 作大范围运动的矩形板动力分析. 振动与冲击, 1998, 17(1): 38-43 (Liu Youwu, Wang Jianming, Zhang Dajun, et al. Dynamic analysis of rectangular plates undergoing large overall motion. Journal of Vibration and Shock, 1998, 17(1): 38-43 (in Chinese) [10] Li L, Zhang DG. Free vibration analysis of rotating functionally graded rectangular plates. Composite Structures, 2016, 136: 493-504 [11] Vu TV, Nguyen NH, Khosravifard A, et al. A simple FSDT-based meshfree method for analysis of functionally graded plates. Engineering Analysis with Boundary Elements, 2017, 79: 1-12 [12] 赵飞云, 洪嘉振, 刘锦阳等. 高速旋转柔性矩形薄板的动力学建模和近似算法. 振动工程学报, 2006, 19(3): 416-421 (Zhao Feiyun, Hong Jiazhen, Liu Jinyang, et al. Dynamic modeling and modal truncation approach for a high-speed rotating thin elastic rectangular plate. Journal of Vibration Engineering, 2006, 19(3): 416-421 (in Chinese) doi: 10.3969/j.issn.1004-4523.2006.03.023 [13] 郑彤, 章定国, 廖连芳等. 航空发动机叶片刚柔耦合动力学分析. 机械工程学报, 2014, 50(23): 42-49 (Zheng Tong, Zhang Dingguo, Liao Lianfang, et al. Rigid-flexible coupling dynamic analysis of aero-engine blades. Journal of Mechanical Engineering, 2014, 50(23): 42-49 (in Chinese) doi: 10.3901/JME.2014.23.042 [14] 蒋建平, 李东旭. 大范围运动板动力刚化分析. 动力学与控制学报, 2005, 3(1): 10-14 (Jiang Jianping, Li Dongxu. Dynamic analysis of rectangular plate undergoing overall motion. Journal of Dynamics and Control, 2005, 3(1): 10-14 (in Chinese) doi: 10.3969/j.issn.1672-6553.2005.01.003 [15] Paidoussis MP. Fluid-Structure Interactions (Slender Structures and Axial Flow). Vol I. London: Academic Press, 1998 [16] 赵江, 俞建峰, 楼琦. 基于流固耦合的T型管振动特性分析. 振动与冲击, 2019, 38(22): 117-123 (Zhao Jiang, Yu Jianfeng, Lou Qi. Modal analysis of T-shaped pipes based on a fluid-solid interaction model. Journal of Vibration and Shock, 2019, 38(22): 117-123 (in Chinese) [17] 刘辉, 邓旭辉, 赵珂等. 不同约束条件对深海采矿输送管道动力学的影响. 应用力学学报, 2022, 39(3): 506-515 (Liu Hui, Deng Xuhui, Zhao Ke, et al. Effects of different constraints on the dynamics of pipeline in deep sea mining. Chinese Journal of Applied Mechanics, 2022, 39(3): 506-515 (in Chinese) doi: 10.11776/j.issn.1000-4939.2022.03.011 [18] 颜雄, 魏莎, 毛晓晔等. 两端弹性支承输流管道固有特性研究. 力学学报, 2022, 54(5): 1341-1352 (Yan Xiong, Wei Sha, Mao Xiaoye, et al. Study on natural characteristics of fluid-conveying pipes with elastic supports at both ends. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352 (in Chinese) [19] 易浩然, 周坤, 代胡亮等. 含集中质量悬臂输流管的稳定性与模态演化特性研究. 力学学报, 2020, 52(6): 1800-1810 (Yi Haoran, Zhou Kun, Dai Huliang, et al. Stability and mode evolution characteristics of a cantilevered fluid-conveying pipe attached with the lumped mass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810 (in Chinese) doi: 10.6052/0459-1879-20-280 [20] 徐鉴, 杨前彪. 输液管模型及其非线性动力学近期研究进展. 力学进展, 2004, 34(2): 182-194 (Xu Jian, Yang Qianbiao. Recent development on models and nonlinear dynamics of pipes conveying fluid. Advances in Mechanics, 2004, 34(2): 182-194 (in Chinese) doi: 10.3321/j.issn:1000-0992.2004.02.003 [21] Nikolić M, Rajković M. Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends. Journal of Fluids and Structures, 2006, 22(2): 173-195 [22] Chen SS. Dynamic stability of tube conveying fluid. Journal of the Engineering Mechanics Division, 1971, 97(5): 1469-1485 [23] Paidoussis MP. Flow-induced instabilities of cylindrical structures. Applied Mechanics Reviews, 1987, 40(2): 163-175 [24] Rousselet J, Herrmann G. Flutter of articulated pipes at finite amplitude. Journal of Applied Mechanics, 1977, 44(1): 154-158 [25] Lundgren TS, Sethna PR, Bajaj AK. Stability boundaries for flow induced motions of tubes with an inclined terminal nozzle. Journal of Sound and Vibration, 1979, 64(4): 553-571 [26] Bajaj AK, Sethna PR. Bifurcations in three-dimensional motions of articulated tubes, part 1:linear systems and symmetry. Journal of Applied Mechanics, 1982, 49(3): 612-618 [27] Bajaj AK, Sethna PR. Effect of symmetry-breaking perturbations on flow-induced oscillations in tubes. Journal of Fluids and Structures, 1991, 5(6): 651-679 [28] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅰ). 应用数学和力学, 2006, 27(7): 819-824 (Xu Jian, Yang Qianbiao. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid (I). Applied Mathematics and Mechanics, 2006, 27(7): 819-824 (in Chinese) doi: 10.3321/j.issn:1000-0887.2006.07.009 [29] 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ). 应用数学和力学, 2006, 27(7): 825-832Xu Jian, Yang Qianbiao, Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid (II). Applied Mathematics and Mechanics, 2006, 27(7): 825-832 (in Chinese) [30] Paidoussis MP, Li GX. Pipes conveying fluid: A model dynamical problem. Journal of Fluids and Structures, 1993, 7(2): 137-204 [31] 黄玉盈, 钱勤, 徐鉴等. 输液管的非线性振动、分叉与混沌——现状与展望. 力学进展, 1998, 28(1): 30-42 (Huang Yuying, Qian Qin, Xu Jian, et al. Advances and trends of nonlinear dynamics of pipes conveying fluid. Advances in Mechanics, 1998, 28(1): 30-42 (in Chinese) doi: 10.3321/j.issn:1000-0992.1998.01.003 [32] Ibrahim RA. Overview of mechanics of pipes conveying fluids—part I: fundamental studies. Journal of Pressure Vessel Technology, 2010, 132(3): 034001 [33] Ibrahim RA. Mechanics of pipes conveying fluids—part II: applications and fluid elastic problems. Journal of Pressure Vessel Technology, 2011, 133(2): 024001 [34] 王乙坤, 王琳. 分布式运动约束下悬臂输液管的参数共振研究. 力学学报, 2019, 51(2): 558-568 (Wang Yikun, Wang Lin. Parametric resonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 558-568 (in Chinese) doi: 10.6052/0459-1879-18-295 [35] Wang YJ, Zhang QC, Wang W, et al. In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends. Applied Mathematics and Mechanics (English Edition) , 2019, 40(8): 1119-1134 [36] 宫亚飞, 甄亚欣. 含有初始弯曲的功能梯度输流管的平衡分岔分析. 振动与冲击, 2022, 41(11): 27-32 (Gong Yafei, Zhen Yaxin. Equilibrium bifurcation analysis of functionally graded pipe conveying fluid with initial curvature. Journal of Vibration and Shock, 2022, 41(11): 27-32 (in Chinese) doi: 10.13465/j.cnki.jvs.2022.11.004 [37] Oh Y, Yoo HH. Thermo-elastodynamic coupled model to obtain natural frequency and stretch characteristics of a rotating blade with a cooling passage. International Journal of Mechanical Sciences, 2020, 165: 105194 [38] 张博, 史天姿, 张贻林等. 旋转输液管动力稳定性理论分析. 应用数学和力学, 2022, 43(2): 166-175 (Zhang Bo, Shi Tianzi, Zhang Yilin, et al. Theoretical analysis on free vibration of a rotating pipe conveying fluid. Applied Mathematics and Mechanics, 2022, 43(2): 166-175 (in Chinese) [39] 刘言明, 李东明, 牛夕莹等. 基于逆向工程的涡轮冷却叶片三维建模及数值模拟. 热能动力工程, 2021, 36(6): 57-62 (Liu Yanming, Li Dongming, Niu Xiying, et al. Three-dimensional modeling and numerical simulation of turbine cooling blades based on reverse engineering. Journal of Engineering for Thermal Energy and Power, 2021, 36(6): 57-62 (in Chinese) doi: 10.16146/j.cnki.rndlgc.2021.06.009 [40] Han JC, Huh M. Recent studies in turbine blade internal cooling heat transfer. Heat Transfer Research, 2010, 41(8): 803-828 [41] Chiu YJ, Chen D. Z The coupled vibration in a rotating multi-disk rotor system. International Journal of Mechanical Sciences, 2011, 53(1): 1-10 [42] Benjamin TB. Dynamics of a system of articulated pipes conveying fluid. I. theory. Proceedings of the Royal Society A, 1961, 261(1307): 457-486 [43] Paidoussis MP, Issid NT. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration, 1974, 33(3): 267-294 [44] Yoo H, Shin SH. Vibration analysis of rotating cantilever beams. Journal of Sound and Vibration, 1998, 212(5): 807-828 -