EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚脲弹性体力学性能与本构关系研究进展

龚臣成 陈艳 戴兰宏

龚臣成, 陈艳, 戴兰宏. 聚脲弹性体力学性能与本构关系研究进展. 力学学报, 2023, 55(1): 1-23 doi: 10.6052/0459-1879-22-455
引用本文: 龚臣成, 陈艳, 戴兰宏. 聚脲弹性体力学性能与本构关系研究进展. 力学学报, 2023, 55(1): 1-23 doi: 10.6052/0459-1879-22-455
Gong Chencheng, Chen Yan, Dai Lanhong. Review on mechanical behavior and constitutive relation of polyurea elastomer. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 1-23 doi: 10.6052/0459-1879-22-455
Citation: Gong Chencheng, Chen Yan, Dai Lanhong. Review on mechanical behavior and constitutive relation of polyurea elastomer. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 1-23 doi: 10.6052/0459-1879-22-455

聚脲弹性体力学性能与本构关系研究进展

doi: 10.6052/0459-1879-22-455
基金项目: 国家自然科学基金(11988102)和中国科学院B类战略性先导专项(XDB22040302, XDB22040303)资助项目
详细信息
    通讯作者:

    陈艳, 研究员, 主要研究方向为冲击动力学与新型材料力学性能. E-mail: chenyan@lnm.imech.ac.cn

  • 中图分类号: O34

REVIEW ON MECHANICAL BEHAVIOR AND CONSTITUTIVE RELATION OF POLYUREA ELASTOMER

  • 摘要: 聚脲是一种由异氰酸酯组分和氨基组分反应生成的新型弹性体高聚物. 由于聚脲具有断裂伸长率高、应变率强化、高耗能等一系列优异的力学性能, 其在国防、能源、交通等领域显示出广阔的应用前景. 目前, 国内外学者针对聚脲在不同温度、不同应变率下的静动态力学性能开展了大量研究, 在此基础上提出了多种本构模型, 对温度、应变率等因素相关的力学行为进行了描述和预测. 这些工作为深刻理解聚脲抗冲击机理及材料的进一步应用奠定了基础. 文章首先简要介绍了聚脲弹性体的微相分离结构及特点; 然后从小变形线性黏弹性和大变形非线性黏弹性两个方面概述了关于聚脲力学性能的研究, 包括相应测试技术的发展和聚脲黏弹性影响因素的研究; 进一步从变形梯度乘法分解法、遗传积分法、应变-时间解耦法等不同建模方法出发对已建立的聚脲本构模型进行综述, 并从应变率范围、温度范围、压力相关性、软化行为表征及模型参数数量的角度对比了不同类型模型的区别; 最后针对聚脲力学性能与本构关系下一步研究值得重点关注的问题提出了几点建议.

     

  • 图  1  聚脲共聚反应原理图

    Figure  1.  Schematic of the copolymerization reaction resulting in the formation of polyurea

    图  2  聚脲微相分离结构AFM图像[19]

    Figure  2.  AFM image of the microphase-segregated structure in polyurea[19]

    图  3  聚脲时温等效得到的松弛主曲线[26]

    Figure  3.  Master relaxation curve of polyurea obtained through Time-Temperature superposition[26]

    图  4  聚脲DMA动态模量主曲线与超声实验对比[30]

    Figure  4.  Comparison of the master dynamic modulus curves from the DMA tests and ultrasonic measurements on polyurea[30]

    图  5  聚脲低、高应变率单轴压缩应力−应变曲线[22]

    Figure  5.  Uniaxial compression stress-strain curves of polyurea under low or high strain rates[22]

    图  6  聚脲不同应变率下拉压应力−应变曲线[39]

    Figure  6.  Tensile and compressive stress-strain curves of polyurea under different strain rates[39]

    图  7  聚脲不同温度下动态压缩应力−应变曲线[46]

    Figure  7.  Dynamic compression stress-strain curves of polyurea at different temperatures[46]

    图  8  聚脲不同应变率下间歇拉伸与连续拉伸应力−应变曲线[47]

    Figure  8.  Stress-strain curves of polyurea under the interrupted and continuous tensile experiments at different strain rates[47]

    图  9  聚脲不同温度下静动态压缩应力−应变曲线[41]

    Figure  9.  Quasi-static and dynamic compression stress-strain curves of polyurea under different temperatures[41]

    图  10  Qi-Boyce模型的一维流变图[50]

    Figure  10.  One-dimensional schematics of the Qi-Boyce model[50]

    图  11  Shim-Mohr模型的一维流变图[14]

    Figure  11.  One-dimensional schematics of the Shim-Mohr model[14]

    图  12  Grujicic模型的流变图[16]

    Figure  12.  Schematics of the Grujicic model[16]

    图  13  Cho-Boyce模型的一维流变图[56]

    Figure  13.  One-dimensional schematics of the Cho-Boyce model[56]

    表  1  各模型对比

    Table  1.   Comparison of all models

    Modelling approachModel nameStrain rate range*/s−1Temperature range*/KPressure dependenceSofteningParameter number
    framework of multiplicative decomposition
    of the deformation gradient
    Qi-Boyce[50]10−2 ~ 10−1room temperaturenoyes10
    Jiao[53]105 room temperatureyesno10
    Shim-Mohr[14]10−3 ~ 101 room temperaturenono8
    Grujicic[16]staticroom temperaturenoyes14
    Cho-Boyce[56]10−3 ~ 103 room temperaturenoyes24
    Chu-Liu[57]10−2 ~ 103 273 ~ 333noyes21
    hereditary integral approachAmirkhizi-Nemat-Nasser[15]103 273 ~ 333yesno18
    Li-Lua[17]10−3 ~ 103 room temperaturenono20
    Chevellard-Liechti[29]10−4 ~ 10−3 230 ~ 293yesno14
    Gong-Chen-Dai[41]10−3 ~ 103 243 ~ 333nono14
    Guo-Chen-Zhai[65]10−3 ~ 103 room temperaturenono7
    strain-time decoupling approachGamonpilas-McCuiston[40]10−3 ~ 103 room temperaturenono19
    Mohotti[69]10−1 ~ 102 room temperaturenono11
    othersZhang-Wang[18]10−3 ~ 104233 ~ 293nono15
    Das-Roy[81]100 ~ 103 room temperatureyesyes35
    *The range which is verified by experimental data
    下载: 导出CSV
  • [1] 蔡军锋, 李少杰, 闫军等. 聚脲涂层抗爆抗侵彻性能研究进展. 兵器装备工程学报, 2021, 42(8): 112-118 (Cai Junfeng, Li Shaojie, Yan Jun, et al. Review on blast mitigation and anti-penetration performance of polyurea coating. Journal of Ordnance Equipment Engineering, 2021, 42(8): 112-118 (in Chinese) doi: 10.11809/bqzbgcxb2021.08.018
    [2] Shojaei B, Najafi M, Yazdanbakhsh A, et al. A review on the applications of polyurea in the construction industry. Polymers for Advanced Technologies, 2021, 32(8): 2797-2812 doi: 10.1002/pat.5277
    [3] 冯加和, 董奇, 张刘成等. 聚脲弹性体在爆炸防护中的研究进展. 含能材料, 2020, 28(4): 277-290 (Feng Jiahe, Dong Qi, Zhang Liucheng, et al. Review on using polyurea elastomer for enhanced blast-mitigation. Chinese Journal of Energetic Materials, 2020, 28(4): 277-290 (in Chinese)
    [4] 李桂群, 侯瑞, 胡国祥等. 聚脲涂料发展及其应用. 工程塑料应用, 2019, 47(9): 163-168 (Li Guiqun, Hou Rui, Hu Guoxiang, et al. Development and application of polyurea coatings. Engineering Plastics Application, 2019, 47(9): 163-168 (in Chinese) doi: 10.3969/j.issn.1001-3539.2019.09.031
    [5] 黄微波, 宋奕龙, 马明亮等. 喷涂聚脲弹性体抗爆抗冲击性能研究进展. 工程塑料应用, 2019, 47(1): 148-153 (Huang Weibo, Song Yilong, Ma Mingliang, et al. Research progress on blast mitigation and shock resistance performance of spray polyurea elastomer. Engineering Plastics Application, 2019, 47(1): 148-153 (in Chinese) doi: 10.3969/j.issn.1001-3539.2019.01.026
    [6] Iqbal N, Tripathi M, Parthasarathy S, et al. Polyurea coatings for enhanced blast-mitigation: A review. RSC Advances, 2016, 6(111): 109706-109717 doi: 10.1039/C6RA23866A
    [7] 赵延杰, 刘建湖, 汪俊等. 聚脲在舰船结构抗爆防护中的应用研究进展. 船舶力学, 2022, 26(4): 595-607 (Zhao Yanjie, Liu Jianhu, Wang Jun, et al. Research advances of polyurea application in ship structure protection against blast loading. Journal of Ship Mechanics, 2022, 26(4): 595-607 (in Chinese) doi: 10.3969/j.issn.1007-7294.2022.04.015
    [8] 郭国吉, 陈彩英, 王向明等. 聚脲弹性体防护材料的研究进展. 中国表面工程, 2021, 34(6): 1-20 (Guo Guoji, Chen Caiying, Wang Xiangming, et al. Research progress of polyurea elastomer protective materials. China Surface Engineering, 2021, 34(6): 1-20 (in Chinese) doi: 10.11933/j.issn.1007-9289.20210602001
    [9] Zhang R, Huang WB, Lyu P, et al. Polyurea for blast and impact protection: A review. Polymers, 2022, 14(13): 2670
    [10] Shahi V, Alizadeh V, Amirkhizi AV. Thermo-mechanical characterization of polyurea variants. Mechanics of Time-Dependent Materials, 2020, 25(3): 447-471
    [11] Arzhakov MS, Yakovlev PP, Yarysheva AY, et al. Mechanical properties of insulation coatings based on modified polyurea. Doklady Physical Chemistry, 2021, 497(1): 25-27 doi: 10.1134/S0012501621030015
    [12] Riehle N, Athanasopulu K, Kutuzova L, et al. Influence of hard segment content and diisocyanate structure on the transparency and mechanical properties of poly(dimethylsiloxane)-based urea elastomers for biomedical applications. Polymers, 2021, 13(2): 212
    [13] Holzworth K, Jia Z, Amirkhizi AV, et al. Effect of isocyanate content on thermal and mechanical properties of polyurea. Polymer, 2013, 54(12): 3079-3085 doi: 10.1016/j.polymer.2013.03.067
    [14] Shim J, Mohr D. Rate dependent finite strain constitutive model of polyurea. International Journal of Plasticity, 2011, 27(6): 868-886 doi: 10.1016/j.ijplas.2010.10.001
    [15] Amirkhizi AV, Isaacs J, McGee J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Philosophical Magazine, 2006, 86(36): 5847-5866 doi: 10.1080/14786430600833198
    [16] Grujicic M, He T, Pandurangan B. Development and parameterization of an equilibrium material model for segmented polyurea. Multidiscipline Modeling in Materials and Structures, 2011, 7(2): 96-114 doi: 10.1108/15736101111157064
    [17] Li CY, Lua J. A hyper-viscoelastic constitutive model for polyurea. Materials Letters, 2009, 63(11): 877-880 doi: 10.1016/j.matlet.2009.01.055
    [18] Zhang XQ, Wang JJ, Guo WG, et al. A bilinear constitutive response for polyureas as a function of temperature, strain rate and pressure. Journal of Applied Polymer Science, 2017, 134(35): 45256
    [19] Li T, Zhang C, Xie ZN, et al. A multi-scale investigation on effects of hydrogen bonding on microstructure and macro-properties in a polyurea. Polymer, 2018, 145: 261-271 doi: 10.1016/j.polymer.2018.05.003
    [20] Santana JS, Cardoso ES, Triboni ER, et al. Polyureas versatile polymers for new academic and technological applications. Polymers, 2021, 13(24): 4393
    [21] 李少杰, 闫军, 杜仕国等. 聚脲弹性体微相分离研究及主要进展. 材料导报, 2020, 34(21): 21205-21210 (Li Shaojie, Yan Jun, Du Shiguo, et al. A review on the microphase separation of polyurea elastomers. Materials Reports, 2020, 34(21): 21205-21210 (in Chinese) doi: 10.11896/cldb.19070177
    [22] Yi J, Boyce MC, Lee GF, et al. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes. Polymer, 2006, 47(1): 319-329 doi: 10.1016/j.polymer.2005.10.107
    [23] Grujicic M, He T, Pandurangan B, et al. Experimental characterization and material-model development for microphase-segregated polyurea: An overview. Journal of Materials Engineering and Performance, 2012, 21(1): 2-16 doi: 10.1007/s11665-011-9875-6
    [24] 王晓明, 吴荣兴, 蒋义等. 显式模拟类橡胶材料应力软化引起的不可恢复变形及其各向异性特征. 力学学报, 2021, 53(7): 1999-2009 (Wang Xiaoming, Wu Rongxing, Jiang Yi, et al. Explicitly modeling permanent set and anisotropy property induced by stress softening for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009 (in Chinese) doi: 10.6052/0459-1879-21-060
    [25] 谢明宇, 李法新. 固体的弹性模量和内耗测量方法研究进展. 力学进展, 2022, 52(1): 33-52 (Xie Mingyu, Li Faxin. Review of the measurement methods for elastic moduli and internal friction of solids. Advances in Mechanics, 2022, 52(1): 33-52 (in Chinese) doi: 10.6052/1000-0992-21-013
    [26] Knauss WG. Viscoelastic material characterization relative to constitutive and failure response of an elastomer. Final Report to the Office of Naval Research, California Institute of Technology, Pasadena, CA, USA, 2004
    [27] Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 1955, 77(14): 3701-3707 doi: 10.1021/ja01619a008
    [28] Zhao J, Knauss WG, Ravichandran G. Applicability of the time–temperature superposition principle in modeling dynamic response of a polyurea. Mechanics of Time-Dependent Materials, 2007, 11(3-4): 289-308 doi: 10.1007/s11043-008-9048-7
    [29] Chevellard G, Ravi-Chandar K, Liechti KM. Modeling the nonlinear viscoelastic behavior of polyurea using a distortion modified free volume approach. Mechanics of Time-Dependent Materials, 2011, 16(2): 181-203
    [30] Qiao J, Amirkhizi AV, Schaaf K, et al. Dynamic mechanical and ultrasonic properties of polyurea. Mechanics of Materials, 2011, 43(10): 598-607 doi: 10.1016/j.mechmat.2011.06.012
    [31] Nantasetphong W, Jia Z, Hasan MA, et al. A new technique for characterization of low impedance materials at acoustic frequencies. Experimental Mechanics, 2018, 58(8): 1311-1324 doi: 10.1007/s11340-018-0413-4
    [32] Das S, Yilgor I, Yilgor E, et al. Structure-property relationships and melt rheology of segmented, non-chain extended polyureas: Effect of soft segment molecular weight. Polymer, 2007, 48(1): 290-301 doi: 10.1016/j.polymer.2006.10.029
    [33] 吕平, 陈国华, 黄微波. 聚天冬氨酸酯聚脲的动态力学行为研究. 武汉理工大学学报, 2007, 29(4): 61-63 (Lű Ping, Chen Guohua, Huang Weibo. Research on the dynamic mechanical properties of polyureas based on polyaspartic esters. Journal of Wuhan University of Technology, 2007, 29(4): 61-63 (in Chinese) doi: 10.3321/j.issn:1671-4431.2007.04.019
    [34] 陈国华, 吕平, 黄微波. 聚天门冬氨酸酯合成新型脂肪族聚脲弹性体. 中国海洋大学学报, 2008, 38(2): 315-318 (Chen Guohua, Lv Ping, Huang Weibo. Novel aliphatic polyurea elastomer based on polyaspartic ester. Journal of Ocean University of China, 2008, 38(2): 315-318 (in Chinese)
    [35] 吕平, 陈国华, 黄微波. 新型聚天冬氨酸酯聚脲的合成、结构与性能研究. 高校化学工程学报, 2008, 22(1): 106-112 (Lü Ping, Chen Guohua, Huang Weibo. Study on synthesis, morphology and properties of novel polyureas based on polyaspartic esters. Journal of Chemical Engineering of Chinese Universities, 2008, 22(1): 106-112 (in Chinese) doi: 10.3321/j.issn:1003-9015.2008.01.020
    [36] Roland CM, Twigg JN, Vu Y, et al. High strain rate mechanical behavior of polyurea. Polymer, 2007, 48(2): 574-578 doi: 10.1016/j.polymer.2006.11.051
    [37] Qiao J, Wu GH. Rate-dependent tensile behavior of polyurea at low strain rates. International Journal of Polymer Analysis and Characterization, 2011, 16(5): 290-297 doi: 10.1080/1023666X.2011.587944
    [38] Shim J, Mohr D. Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates. International Journal of Impact Engineering, 2009, 36(9): 1116-1127 doi: 10.1016/j.ijimpeng.2008.12.010
    [39] Sarva SS, Deschanel S, Boyce MC, et al. Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer, 2007, 48(8): 2208-2213 doi: 10.1016/j.polymer.2007.02.058
    [40] Gamonpilas C, McCuiston R. A non-linear viscoelastic material constitutive model for polyurea. Polymer, 2012, 53(17): 3655-3658 doi: 10.1016/j.polymer.2012.06.030
    [41] Gong CC, Chen Y, Li T, et al. Free volume based nonlinear viscoelastic model for polyurea over a wide range of strain rates and temperatures. Mechanics of Materials, 2021, 152: 103650
    [42] Wang H, Deng XM, Wu HJ, et al. Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling. Defence Technology, 2019, 15(6): 875-884 doi: 10.1016/j.dt.2019.04.016
    [43] Cui J, Shi YC, Zhang XH, et al. Experimental study on the tension and puncture behavior of spray polyurea at high strain rates. Polymer Testing, 2021, 93: 106863
    [44] Chen D, Wu H, Wei JS, et al. Nonlinear visco-hyperelastic tensile constitutive model of spray polyurea within wide strain-rate range. International Journal of Impact Engineering, 2022, 163: 104184
    [45] Chen D, Wu H, Fang Q, et al. A nonlinear visco-hyperelastic model for spray polyurea and applications. International Journal of Impact Engineering, 2022, 167: 104265
    [46] Guo H, Guo WG, Amirkhizi AV, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures. Polymer Testing, 2016, 53: 234-244 doi: 10.1016/j.polymertesting.2016.06.004
    [47] Miao YG, Zhang HN, He He, et al. Mechanical behaviors and equivalent configuration of a polyurea under wide strain rate range. Composite Structures, 2019, 222: 110923
    [48] Mott PH, Giller CB, Fragiadakis D, et al. Deformation of polyurea: Where does the energy go? Polymer, 2016, 105: 227-233
    [49] Liu Q, Chen PW, Zhang Y, et al. Compressive behavior and constitutive model of polyurea at high strain rates and high temperatures. Materials Today Communications, 2020, 22: 100834
    [50] Qi HJ, Boyce MC. Stress–strain behavior of thermoplastic polyurethanes. Mechanics of Materials, 2005, 37(8): 817-839 doi: 10.1016/j.mechmat.2004.08.001
    [51] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412 doi: 10.1016/0022-5096(93)90013-6
    [52] Qi HJ, Boyce MC. Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. Journal of the Mechanics and Physics of Solids, 2004, 52(10): 2187-2205 doi: 10.1016/j.jmps.2004.04.008
    [53] Jiao T, Clifton RJ, Grunschel SE. Pressure-sensitivity and constitutive modeling of an elastomer at high strain rates. AIP Conference Proceedings, 2009, 1195(1): 1229-1232
    [54] 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展. 力学学报, 2020, 52(5): 1221-1232 (Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1232 (in Chinese) doi: 10.6052/0459-1879-20-189
    [55] Gent AN. A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996, 69(1): 59-61 doi: 10.5254/1.3538357
    [56] Cho H, Rinaldi RG, Boyce MC. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyurea. Soft Matter, 2013, 9(27): 6319-6330 doi: 10.1039/c3sm27125k
    [57] Chu DY, Li ZJ, Yao KL, et al. Studying the strengthening mechanism and thickness effect of elastomer coating on the ballistic-resistance of the polyurea-coated steel plate. International Journal of Impact Engineering, 2022, 163: 104181
    [58] Ogden RW. Large deformation isotropic elasticity-correlation of theory and experiment for compressible rubberlike solids. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1972, 328(1575): 567-583
    [59] Zhang LH, Yao XH, Zang SG, et al. Temperature- and strain rate-dependent constitutive modeling of the large deformation behavior of a transparent polyurethane interlayer. Polymer Engineering and Science, 2015, 55(8): 1864-1872 doi: 10.1002/pen.24026
    [60] Knauss WG, Emri IJ. Non-linear viscoelasticity based on free-volume consideration. Computers & Structures, 1981, 13(1-3): 123-128
    [61] Knauss WG, Emri I. Volume change and the nonlinearly thermoviscoelastic constitution of polymers. Polymer Engineering and Science, 1987, 27(1): 86-100 doi: 10.1002/pen.760270113
    [62] Popelar CF, Liechti KM. Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive. Journal of Engineering Materials and Technology, 1997, 119(3): 205-210 doi: 10.1115/1.2812245
    [63] Popelar CF, Liechti KM. A distortion-modified free volume theory for nonlinear viscoelastic behavior. Mechanics of Time-Dependent Materials, 2003, 7(2): 89-141 doi: 10.1023/A:1025625430093
    [64] Doolittle AK. Studies in newtonian flow II. The dependence of the viscosity of liquids on free-space. Journal of Applied Physics, 1951, 22(12): 1471-1475
    [65] Guo H, Chen Y, Tao JL, et al. A viscoelastic constitutive relation for the rate-dependent mechanical behavior of rubber-like elastomers based on thermodynamic theory. Materials & Design, 2019, 178: 107876
    [66] Guo H, Guo WG, Amirkhizi AV. Constitutive modeling of the tensile and compressive deformation behavior of polyurea over a wide range of strain rates. Construction and Building Materials, 2017, 150: 851-859 doi: 10.1016/j.conbuildmat.2017.06.055
    [67] Attard MM, Hunt GW. Hyperelastic constitutive modeling under finite strain. International Journal of Solids and Structures, 2004, 41(18-19): 5327-5350 doi: 10.1016/j.ijsolstr.2004.03.016
    [68] Rivlin RS. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London Series A-Mathematical and Physical Sciences, 1948, 241(835): 379-397
    [69] Mohotti D, Ali M, Ngo T, et al. Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading. Materials & Design, 2014, 53: 830-837
    [70] Mooney M. A theory of large elastic deformation. Journal of Applied Physics, 1940, 11(9): 582-592 doi: 10.1063/1.1712836
    [71] Richeton J, Schlatter G, Vecchio KS, et al. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer, 2005, 46(19): 8194-8201 doi: 10.1016/j.polymer.2005.06.103
    [72] Richeton J, Ahzi S, Vecchio KS, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. International Journal of Solids and Structures, 2006, 43(7-8): 2318-2335 doi: 10.1016/j.ijsolstr.2005.06.040
    [73] Yu P, Yao XH, Han Q, et al. A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures. Polymer, 2014, 55(25): 6577-6593 doi: 10.1016/j.polymer.2014.09.071
    [74] 于鹏, 姚小虎, 张晓晴等. 聚碳酸酯类非晶聚合物力学性能及其本构关系. 力学进展, 2016, 46: 140-178 (Yu Peng, Yao Xiaohu, Zhang Xiaoqing, et al. Mechanical behaviors and constitutive models of polycarbonate amorphous polymers. Advances in Mechanics, 2016, 46: 140-178 (in Chinese) doi: 10.6052/1000-0992-15-016
    [75] Kamrin K, Bouchbinder E. Two-temperature continuum thermomechanics of deforming amorphous solids. Journal of the Mechanics and Physics of Solids, 2014, 73: 269-288 doi: 10.1016/j.jmps.2014.09.009
    [76] Chowdhury SR, Roy D. A non-equilibrium thermodynamic model for viscoplasticity and damage: Two temperatures and a generalized fluctuation relation. International Journal of Plasticity, 2019, 113: 158-184 doi: 10.1016/j.ijplas.2018.09.014
    [77] Rao W, Chen Y, Dai LH. A constitutive model for metallic glasses based on two-temperature nonequilibrium thermodynamics. International Journal of Plasticity, 2022, 154: 103309
    [78] Xiao Rui, Nguyen TD. An effective temperature theory for the nonequilibrium behavior of amorphous polymers. Journal of the Mechanics and Physics of Solids, 2015, 82: 62-81 doi: 10.1016/j.jmps.2015.05.021
    [79] Das S, Chowdhury SR, Roy D. A constitutive model for thermoplastics based on two temperatures. European Journal of Mechanics a-Solids, 2018, 72: 440-451 doi: 10.1016/j.euromechsol.2018.06.010
    [80] Falk ML, Langer JS. 类固体非晶态材料的变形与失效. 陈艳, 译. 力学进展, 2021, 51(2): 406-426

    Falk ML, Langer JS. Deformation and failure of amorphous, solidlike materials. Chen Yan, trans. Advances in Mechanics, 2021, 51(2): 406-426 (in Chinese)
    [81] Das S, Roy D. A constitutive model for block-copolymers based on effective temperature. International Journal of Mechanical Sciences, 2019, 161-162: 105082
    [82] Mahieux CA, Reifsnider KL. Property modeling across transition temperatures in polymers: A robust stiffness-temperature model. Polymer, 2001, 42(7): 3281-3291 doi: 10.1016/S0032-3861(00)00614-5
    [83] Argon AS. Theory for low-temperature plastic-deformation of glassy polymers. Philosophical Magazine, 1973, 28(4): 839-865 doi: 10.1080/14786437308220987
    [84] Rinaldi RG, Boyce MC, Weigand SJ, et al. Microstructure evolution during tensile loading histories of a polyurea. Journal of Polymer Science Part B-Polymer Physics, 2011, 49(23): 1660-1671 doi: 10.1002/polb.22352
    [85] Choi T, Fragiadakis D, Roland CM, et al. Microstructure and segmental dynamics of polyurea under uniaxial deformation. Macromolecules, 2012, 45(8): 3581-3589 doi: 10.1021/ma300128d
    [86] 王维斌, 索涛, 郭亚洲等. 电磁霍普金森杆实验技术及研究进展. 力学进展, 2021, 51(4): 729-754 (Wang Weibin, Suo Tao, Guo Yazhou, et al. Experimental technique and research progress of electromagnetic Hopkinson bar. Advances in Mechanics, 2021, 51(4): 729-754 (in Chinese) doi: 10.6052/1000-0992-20-024
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  116
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 录用日期:  2022-11-06
  • 网络出版日期:  2022-11-07
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回