EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构爆炸毁伤的浸没多介质有限体积物质点法

倪锐晨 孙梓贤 李家盛 张雄

倪锐晨, 孙梓贤, 李家盛, 张雄. 结构爆炸毁伤的浸没多介质有限体积物质点法. 力学学报, 2022, 54(12): 3269-3282 doi: 10.6052/0459-1879-22-446
引用本文: 倪锐晨, 孙梓贤, 李家盛, 张雄. 结构爆炸毁伤的浸没多介质有限体积物质点法. 力学学报, 2022, 54(12): 3269-3282 doi: 10.6052/0459-1879-22-446
Ni Ruichen, Sun Zixian, Li Jiasheng, Zhang Xiong. An immersed multi-material finite volume-material point metohd for structural damage under blast loading. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3269-3282 doi: 10.6052/0459-1879-22-446
Citation: Ni Ruichen, Sun Zixian, Li Jiasheng, Zhang Xiong. An immersed multi-material finite volume-material point metohd for structural damage under blast loading. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3269-3282 doi: 10.6052/0459-1879-22-446

结构爆炸毁伤的浸没多介质有限体积物质点法

doi: 10.6052/0459-1879-22-446
基金项目: 国家自然科学基金资助项目(12172192)
详细信息
    作者简介:

    张雄, 教授, 主要研究方向: 极端变形问题的数值模拟方法. E-mail: xzhang@tsinghua.edu.cn

  • 中图分类号: TU312+.3

AN IMMERSED MULTI-MATERIAL FINITE VOLUME-MATERIAL POINT METOHD FOR STRUCTURAL DAMAGE UNDER BLAST LOADING

  • 摘要: 结构在爆炸载荷作用下的毁伤现象涉及强非线性激波、固体结构极端变形和破坏破碎、强流固耦合, 给数值计算方法带来了极大的困难与挑战. 针对结构爆炸毁伤问题, 建立了浸没多介质有限体积物质点法(iMMFV-MPM), 采用基于黎曼求解器的多介质有限体积法(MMFVM)模拟爆炸产物和空气的多介质流体, 采用物质点法(MPM)模拟固体结构, 并将提出的基于拉格朗日乘子的连续力浸没边界法(lg-CFIBM)扩展到多介质流体中以处理流固耦合边界条件. 该算法在每个时间步严格满足流固耦合界面处的速度边界条件及动量守恒方程, 不需要重构流固耦合界面, 能够有效地模拟近场爆炸下爆炸产物与结构的相互作用、激波与结构的相互作用和演化以及结构的动态断裂和拓扑变化. 利用iMMFV-MPM对近场爆炸下方形钢筋混凝土靶板的失效模式、外爆载荷下建筑物的毁伤现象以及多腔室内爆炸试验进行了模拟, 模拟结果与相关实验数据吻合良好, 验证了所建立的流固耦合算法的有效性及精度.

     

  • 图  1  物质点法的空间离散

    Figure  1.  Spatial discretization of MPM

    图  2  网格单元分类

    Figure  2.  Grid cell classification

    图  3  各浸没边界法边界条件施加示意图

    Figure  3.  Diagram of applying boundary conditions of different IBMs

    图  4  二维激波与氦气泡相互作用问题描述

    Figure  4.  Diagram of 2D shock-helium bubble problem

    图  5  二维激波与氦气泡相互作用问题的模拟结果(左)和实验结果[54](右)

    Figure  5.  Numerical results (left) and experiment data[54] (right) of 2D shock-helium bubble problem

    图  6  氦气泡表面的双反射-折射示意图[54]

    Figure  6.  Schematic for twin regular reflection-refraction[54]

    图  7  实验装置及钢筋混凝土的布筋形式[55]

    Figure  7.  Geometry setup of experiments[55]

    图  8  计算模拟的几何参数设置

    Figure  8.  Geometry set for simulation

    图  9  iMMFV-MPM和MPM的压力云图结果

    Figure  9.  Pressure contour results of the iMMFV-MPM and the pure MPM

    图  10  方形钢筋混凝土靶板的失效模式

    Figure  10.  Damage modes of the reinforced concrete slab

    图  11  iMMFV-MPM模拟的钢筋混凝土靶板中心点位移时程曲线

    Figure  11.  Central deflection curve of the reinforced concrete slab by iMMFV-MPM

    图  12  实验装置及计算模拟的几何建模

    Figure  12.  Setup of experiment and simulation

    图  13  流场压强云图与建筑物损伤云图

    Figure  13.  Pressure contour in fluid domain and damage contour in building

    图  14  流场体积分数截面云图与建筑物压力云图

    Figure  14.  Volume of fraction contour on the plane of $z = 300\;{\text{mm}}$ and pressure contour in building

    图  15  最终时刻的建筑物损伤云图

    Figure  15.  Damage contour in building at last

    图  16  实验和模拟的几何参数设置

    Figure  16.  Geometry setup of experiment and simualtion

    图  17  主爆室侧墙中心点处的压强曲线

    Figure  17.  Pressure curve at the center of sidewall in explosion room

    图  18  各时刻中截面上的流场压强云图和体积分数云图

    Figure  18.  Pressure contour and volume of fraction contour of middle plane at different instants

    图  19  顶板和侧墙的破坏情况

    Figure  19.  Roof and sidewall fragmentation

    表  1  钢筋混凝土靶板算例中HJC强度模型参数[56]

    Table  1.   The material constants of HJC strength model in reinforced concrete slab simulation[56]

    ABNCfc'/MPa
    0.791.600.610.00739.5
    SmaxT/MPaD1D2εf /min
    7.04.10.041.00.000 8
    下载: 导出CSV

    表  2  钢筋混凝土靶板算例中HJC状态方程参数[56]

    Table  2.   The material constants of HJC EOS model in reinforced concrete slab simulation[56]

    Pcrush/MPaμcrushK1/GPaK2/GPa
    160.00185−171
    K3/GPaPlock/GPaμlock
    2080.800.10
    下载: 导出CSV
  • [1] Saurel R, Petitpas F, Berry AR. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 2009, 228: 1678-1712
    [2] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39 (1981) 201-255
    [3] Gueyffier D, Li L, Nadim A, et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three dimensional flows. Journal of Computational Physics, 152 (1999) 423-456
    [4] 张健, 方杰, 范波芹. VOF方法理论与应用综述. 水利水电科技进展, 2005(2): 67-70 (Zhang Jian, Fang Jie, Fan Boqin. Advances in research of VOF method. Advances in Science and Technology of Water Resources, 2005(2): 67-70 (in Chinese) doi: 10.3880/j.issn.1006-7647.2005.02.019
    [5] 王宇航, Wilko Rohlfs, 明平剑. 液滴聚并自弹跳的数值模拟研究: 基于改进的VOF方法. 工程热物理学报, 2022, 43(6): 1541-1546 (Wang Yuhang, Rohlfs Wilko, Ming Pingjian. Numerical simulation of coalescence induced self-propelled droplet jumping: based on an improved VOF method. Journal of Engineering Thermophysics, 2022, 43(6): 1541-1546 (in Chinese)
    [6] Fedkiw RP, Aslam T, Merriman Barry, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 1999, 152: 457-492
    [7] Wang L, Currao GMD, Han F, et al. An immersed boundary method for fluid-structure interaction with compressible multiphase flows. Journal of Computational Physics, 2017, 346: 131-151
    [8] 黄俊凯. 燃油喷射雾化及蒸发过程的数值模拟. [硕士论文]. 北京理工大学, 2018

    Huang Junkai. Numerical simulation of atomization and evaporation in fuel spray. [Master Thesis]. Beijing Institute of Technology, 2018 (in Chinese)
    [9] Saurel R, Boivin P, Le Métayer O. A general formulation for cavitating, boiling and evaporating flows. Computers and Fluids, 2016, 128: 53-64 doi: 10.1016/j.compfluid.2016.01.004
    [10] Saurel R, Franquet E, Daniel E, et al. A relaxation-projection method for compressible flows. Part I. The numerical equation of state for the Euler equations. Journal of Computational Physics, 2007, 223(2): 822-845
    [11] Baer MR, Nunziato JW. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. International Journal of Multiphase Flow, 1986, 12(6): 861
    [12] Kapila AK, Menikoff R, Bdzil JB, et al. Two-phase modeling of deflagration-to-detonation transition in granular materials:reduced equations. Physics of Fluids, 2001, 13(10): 3002-3024
    [13] Harlow FH, Evans MW. A machine calculation method for hydrodynamic problems. LAMS-1956, 1955
    [14] Harlow FH. The particle-in-cell computing method for fluid dynamics. Methods in Computational Physics, 1964, 3: 319-343
    [15] Brackbill JU, Ruppel HM. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics, 1986, 65(2): 314-343
    [16] Brackbill JU, Kothe DB, Ruppel HM. FLIP: A low-dissipation, particle–in–cell method for fluid flow. Computer Physics Communications, 1988, 48(1): 25-38
    [17] Sulsky D, Chen Z, Schreyer HL. A particle method for history-dependent materials. Computer Methods in Applied Mechanics and Engineering, 1994, 118: 179-186
    [18] Zhang X, Chen Z, Liu Y. The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases. Academic Press, 2016
    [19] Gong W, Liu Y, Zhang X, et al. Numerical investigation on dynamical response of aluminum foam subject to hypervelocity impact with material point method. Computer Modeling in Engineering and Sciences, 2012, 83(5): 527-545
    [20] Liu Y, Wang HK, Zhang X. A multiscale framework for high-velocity impact process with combined material point method and molecular dynamics. International Journal of Mechanics and Materials in Design, 2013, 9(2): 127-139
    [21] Huang P, Zhang X, Ma S, et al. Shared memory openmp parallelization of explicit mpm and its application to hypervelocity impact. Computer Modeling in Engineering and Sciences, 2008, 38(2): 119-148
    [22] Ma S, Zhang X, Qiu X. Comparison study of MPM and SPH in modeling hypervelocity impact problems. International Journal of Impact Engineering, 2009, 36(2): 272-282
    [23] Huang P, Zhang X, Ma S, et al. Contact algorithms for the material point method in impact and penetration simulation. International Journal for Numerical Methods in Engineering, 2011, 85(4): 498-517
    [24] 阚镭, 孙梓贤, 张雄等. 钢筋混凝土的杂交交错网格物质点有限元法研究. 中国科学: 物理学 力学 天文学, 2022, 52(10): 50-63

    Kan Lei, Sun Zixian, Zhang Xiong, et al. The hybrid staggered grid finite element material point method (HSGFEMP) for reinforced concrete. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(10): 50-63 (in Chinese))
    [25] Liang Y, Benedek T, Zhang X, et al. Material point method with enriched shape function for crack problems. Computer Methods in Applied Mechanics and Engineering, 2017, 322: 541-562
    [26] Yang P, Liu Y, Zhang X, et al. Simulation of fragmentation with material point method based on gurson model and random failure. CMES:Computer Modeling in Engineering and Sciences, 2012, 85: 207-236
    [27] Zhang F, Zhang X, Sze KY, et al. Incompressible material point method for free surface flow. Journal of Computational Physics, 2017, 330: 92-110
    [28] Song Y, Liu Y, Zhang X. A transport point method for complex flow problems with free surface. Computational Particle Mechanics, 2020, 7: 377-391
    [29] Zhao X, Liang D, Martinelli M. Numerical simulations of dam-break floods with mpm. Procedia Engineering, 2017, 175: 133-140
    [30] Li JG, Hamamoto Y, Liu Y, et al. Sloshing impact simulation with material point method and itsexperimental validations. Computers and Fluids, 2014, 103: 86-99
    [31] Martinelli M, Rohe A, Soga K. Modeling dike failure using the material point method. Procedia Engineering, 2017, 175: 341-348
    [32] Fern E, Rohe A, Soga K, et al. The Material Point Method for Geotechnical Engineering: A Practical Guide. CRC Press, 2019
    [33] Peskin CS. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 1977, 25: 220-252
    [34] Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics, 2005, 37(1): 239-261 doi: 10.1146/annurev.fluid.37.061903.175743
    [35] Hieber SE, Koumoutsakos P. An immersed boundary method for smoothed particle hydrodynamics of self propelled swimmers. Journal of Computational Physics, 2008, 227(19): 8636-8654
    [36] Huang WX, Chang CB, Sung HJ. An improved penalty immersed boundary method for fluid flexible body interaction. Journal of Computational Physics, 2011, 230(12): 5061-5079
    [37] Nasar AMA, Rogers BD, Revell A, et al. Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies. Journal of Fluids and Structures, 2019, 84: 263-282
    [38] Wang S, Zhang G, Cai Y, et al. Comparisons of two representative methods classified as immersed boundary and domain methods. Engineering Analysis with Boundary Elements, 2021, 132: 383-398
    [39] Ye T, Phan-Thien N, Lim CT, et al. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows. Physical Review E, 2017, 95: 063314
    [40] Vasilakis SE, Rodriguez C, Kyriazis N, et al. A direct forcing immersed boundary method for cavitating flows. International Journal for Numerical Methods in Fluids, 2021, 93: 3092-3130
    [41] Lee I, Choi H. A discrete-forcing immersed boundary method for the fluid-structure interaction of an elastic slender body. Journal of Computational Physics, 2015, 280: 529-546
    [42] Wang J, Zhou C. A novel immersed boundary method implemented by imposing reconstructed velocity on virtual boundary. Advances in Applied Mathematics and Mechanics, 2020, 13(1): 83-100
    [43] Borazjani I, Ge L, Sotiropoulos F. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3 d rigid bodies. Journal of Computational Physics, 2008, 227(16): 7587-7620
    [44] Gilmanov A, Sotiropoulos F. A hybrid cartesian/immersed boundary method for simulating flows with 3 d, geometrically complex, moving bodies. Journal of Computational Physics, 2005, 207(2): 457-492
    [45] Gilmanov A, Acharya S. A hybrid immersed boundary and material point method for simulating 3 d fluid structure interaction problems. International Journal for Numerical Methods in Fluids, 2008, 56: 2151-2177, 4
    [46] Clarke D, Salas M, Hassan H. Euler calculations for multi-element airfoils using cartesian grids. AIAA Journal, 1986, 24: 1128-1135
    [47] Brehm C, Fasel HF. A novel concept for the design of immersed interface methods. Journal of Computational Physics, 2013, 242: 234-267
    [48] Boustani J, Barad MF, Kiris CC, et al. Fully-coupled fluid-structure interaction simulations of a supersonic parachute//AIAA Aviation 2019 Forum, 2019
    [49] Ni RC, Li JS, Zhang X, et al. An immersed boundary-material point method for shock-structure interaction and dynamic fracture. Journal of Computational Physics, 2022, 470: 111558
    [50] Venkatakrishnan V. On the accuracy of limiters and convergence to steady-state solutions. AIAA Paper, 1993, 93-0880
    [51] Toro EF. Riemann Solvers and Numerical Methods for Fluids Dynamics. Berlin: Springer-Verlag, 1997
    [52] Ni R, Zhang X. A precise critical time step formula for the explicit material point method. International Journal for Numerical Methods in Engineering, 2020, 121: 4989-5016
    [53] Bardenhagen SG. Energy conservation error in the material point method. Journal of Computational Physics, 2002, 180: 383-403
    [54] Quirk JJ, Karni S. On the dynamics of a shock-bubble interaction. Journal of Fluid Mechanics, 1996, 318: 129-163
    [55] Wang W, Zhang D, Lu FY , et al. Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion. Engineering Failure Analysis, 2013, 27: 41-51 doi: 10.1016/j.engfailanal.2012.07.010
    [56] Holmquist TJ, Johnson GR, Cook WH. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures//14th International Symposium, 1993, 591-600
    [57] Woodson SC, Baylot JT. Structural collapse: quarter-scale model experiments. US Army Technical Report, 1999
    [58] Baylot JT, Bevins TL. Effect of responding and failing structural components on the airblast pressures and loads on and inside of the structure. Computers and Structures, 2007, 85: 891-910
    [59] 郭志昆, 宋锋良, 刘峰等. 扁平箱形密闭结构内爆炸的模型试验. 解放军理工大学学报, 2008, 9(4): 345-350 (Gou Zhikun, Song Fengliang, Liu Feng, et al. Experiment of closed flat box structure subjected to internal detonation. Journal of PLA University of Science and Technology, 2008, 9(4): 345-350 (in Chinese)
    [60] 施绍裘, 王永忠, 王礼立. 国产C30混凝土考虑率型微损伤演化的改进Johnson-Cook强度模型. 岩石力学与工程学报, 2006, 25: 3250-3257 (Shi Shaoqiu, Wang Yongzhong, Wang Lili. Improved Johnson-Cook’s strength model taking account of rate-dependent micro-damage evolution for domestic C30 concrete. Chinese Journal of Rock Mechanics and Engineering, 2006, 25: 3250-3257 (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.z1.102
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  115
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-19
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回