EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扩张尾裙对跨介质航行器高速入水转平弹道特性影响

刘喜燕 罗凯 袁绪龙 任伟

刘喜燕, 罗凯, 袁绪龙, 任伟. 扩张尾裙对跨介质航行器高速入水转平弹道特性影响. 力学学报, 2023, 55(2): 343-354 doi: 10.6052/0459-1879-22-427
引用本文: 刘喜燕, 罗凯, 袁绪龙, 任伟. 扩张尾裙对跨介质航行器高速入水转平弹道特性影响. 力学学报, 2023, 55(2): 343-354 doi: 10.6052/0459-1879-22-427
Liu Xiyan, Luo Kai, Yuan Xulong, Ren Wei. Influence of expansion sterns on the flatting trajectory characteristics of a trans-media vehicle during high speed water entry. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 343-354 doi: 10.6052/0459-1879-22-427
Citation: Liu Xiyan, Luo Kai, Yuan Xulong, Ren Wei. Influence of expansion sterns on the flatting trajectory characteristics of a trans-media vehicle during high speed water entry. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 343-354 doi: 10.6052/0459-1879-22-427

扩张尾裙对跨介质航行器高速入水转平弹道特性影响

doi: 10.6052/0459-1879-22-427
基金项目: 国家重点实验室基金资助项目(6142604190401)
详细信息
    通讯作者:

    袁绪龙, 副教授, 主要研究方向为跨介质航行力学. E-mail: yuanxulong@nwpu.edu.cn

  • 中图分类号: O352

INFLUENCE OF EXPANSION STERNS ON THE FLATTING TRAJECTORY CHARACTERISTICS OF A TRANS-MEDIA VEHICLE DURING HIGH SPEED WATER ENTRY

  • 摘要: 扩张尾裙是影响跨介质航行器高速入水转平弹道及其稳定性的关键因素. 采用流体体积多相流模型和动网格技术, 建立了跨介质超空泡航行器高速入水多相流场弹道耦合计算方法, 并通过试验验证了计算方法的准确性和适用性. 通过对跨介质航行器高速入水转平过程进行数值模拟研究, 获得尾裙外形对航行器入水转平过程中空泡发展形态、流体动力特性与弹道特性的影响, 并分析尾裙扩张角度对高速入水转平弹道的影响规律. 结果表明: 不同预置舵角下的无尾裙外形航行器在入水转平过程中, 攻角持续增大, 最终导致弹道发散, 带尾裙外形航行器在入水后尾裙沾湿形成了恢复力矩, 获得了稳定的入水转平弹道; 设计的1.5°, 6°, 8°尾裙角度的航行器形成了稳定滑水、单侧尾拍以及双侧尾拍3种弹道特征, 且均能实现稳定高速入水转平弹道; 稳定滑水弹道原理为预置舵角与尾裙滑水耦合作用下达到的动态平衡, 该弹道综合阻力系数最小, 转弯效率最高, 动载荷最小, 是跨介质航行器高速入水的理想弹道转平形式.

     

  • 图  1  跨介质航行器示意图

    Figure  1.  Schematic diagram of trans-media vehicle

    图  2  计算域及其边界条件

    Figure  2.  Computational domain and boundary conditions

    图  3  重点区域网格划分细节

    Figure  3.  Local grid refinement

    图  4  网格数量及计算步长影响

    Figure  4.  Influence of grid number and time steps

    图  5  试验模型

    Figure  5.  Experimental model

    图  6  试验和仿真结果对比

    Figure  6.  Comparison of results between experiment and simulation

    图  7  试验和仿真数据验证

    Figure  7.  Comparison of experimental and simulated data

    图  8  入水-转平过程空泡特征

    Figure  8.  Characteristics of cavitation in process of entering the water and turning to flat

    图  9  滑水运动受力示意图

    Figure  9.  Schematic diagram of forces in water planing

    图  10  航行器各部分流体动力特性

    Figure  10.  Hydrodynamic characteristics of vehicle

    图  11  俯仰角速度曲线

    Figure  11.  Pitching angular velocity curve

    图  12  运动特性曲线

    Figure  12.  Motion characteristics curve

    图  13  升力系数

    Figure  13.  Lift coefficient

    图  14  不同尾裙外形的载荷特性

    Figure  14.  Load characteristics of different expansion stern shape

    图  15  不同工况下的弹道特性

    Figure  15.  Ballistic characteristics under different working conditions

    表  1  跨介质航行器主要尺寸参数

    Table  1.   Main parameters of trans-media vehicle

    ParameterValueUnit
    Dcavitator15mm
    Dcylinder65mm
    Lcone385mm
    Lcylinder350mm
    Lexpansion stern65mm
    L1000mm
    下载: 导出CSV

    表  2  不同预置舵角下临界失稳攻角

    Table  2.   Critical instability angle of attack at different preset rudder angles

    Preset rudder angle/(°)Time/msCritical instability angle of attack/(°)
    521.82.437
    10182.397
    2016.62.354
    下载: 导出CSV

    表  3  工况表

    Table  3.   Working condition table

    Casev/(m·s−1)Entry angle/(°)Expansion stern cone angle/(°)
    1150101.5
    2150106
    3150108
    下载: 导出CSV

    表  4  空泡特征

    Table  4.   Cavity characteristics

    Ballistic characteristicsCavity characteristics
    stable planing
    single-sided tail-slapping
    double-sided tail-slapping
    下载: 导出CSV

    表  5  不同工况下的载荷峰值

    Table  5.   Peak load under different working conditions

    CaseAxmax/gAymax/gAxmax/Aymax
    140.3973.061.81
    247113.32.41
    362.73109.31.74
    下载: 导出CSV

    表  6  不同工况下的俯仰运动特性

    Table  6.   Pitching motion characteristics under different working conditions

    CaseIncrement of pitching angle/(°)Range of angular velocity oscillation/((°)·s−1)Average angular velocity
    /((°)·s−1)
    120.35121.2 ~ 275.9205.16
    210.8−323.7 ~ 491.890.09
    311−470.7 ~ 536.891.31
    下载: 导出CSV

    表  7  弹道参数

    Table  7.   Ballistic parameters

    Casevfinal/(m·s−1)y/Lx/L
    11200.4911.3
    21161.1415.9
    31021.2115.35
    下载: 导出CSV
  • [1] 何肇雄, 郑震山, 马东立等. 国外跨介质飞行器发展历程及启示. 舰船科学技术, 2016, 38(9): 152-157 (He Zhaoxiong, Zheng Zhenshan, Ma Dongli, et al. Development of foreign trans-media aircraft and its enlightenment to China. Ship Science and Technology, 2016, 38(9): 152-157 (in Chinese) doi: 10.3404/j.issn.1672-7619.2016.05.032
    [2] 杨兴帮, 梁建宏, 文力等. 水空两栖跨介质无人飞行器研究现状. 机器人, 2018, 40(1): 102-114 (Yang Xingbang, Liang Jianhong, Wen Li, et al. Research status of water-air amphibious trans-media unmanned vehicle. Robot, 2018, 40(1): 102-114 (in Chinese)
    [3] 冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术. 空军工程大学学报(自然科学版), 2019, 20(3): 8-13 (Feng Jinfu, Hu Junhua, Qi Duo. Study on development needs and key technologies of air-water trans-media vehicle. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 8-13 (in Chinese)
    [4] 唐胜景, 张宝超, 岳彩红等. 跨介质飞行器关键技术及飞行动力学研究趋势分析. 飞航导弹, 2021, 6: 7-13 (Tang Shengjing, Zhang Baochao, Yue Caihong, et al. Analysis of key technologies and flight dynamics of trans-media aircraft. Aerodynamic Missile Journal, 2021, 6: 7-13 (in Chinese)
    [5] 王浩宇, 李木易, 程少化等. 航行体高速入水问题研究综述. 宇航总体技术, 2021, 5(3): 65-70 (Wang Haoyu, Li Muyi, Cheng Shaohua, et al. Review of vehicle’s high-speed water entry. Astronautical Systems Engineering Technology, 2021, 5(3): 65-70 (in Chinese)
    [6] 张衡. 尾型对超空化航行器水动力特性的影响研究. [硕士论文]. 西安: 西北工业大学, 2015

    Zhang Heng. Stern hydrodynamic characteristics of supercavitation vehicle research. [Master Thesis]. Xi’an: Northwestern Polytechnology University, 2015 (in Chinese))
    [7] 王科燕, 邓飞, 张衡等. 超空泡航行器扩张尾裙流体动力特性试验研究. 西安交通大学学报, 2016, 50(1): 53-58 (Wang Keyan, Deng Fei, Zhang Heng, et al. Experimental research on hydrodynamic characteristics of supercavitating vehicle expansion sterns. Journal of Xian Jiaotong University, 2016, 50(1): 53-58 (in Chinese) doi: 10.7652/xjtuxb201601009
    [8] 栗夫园, 党建军, 张宇文. 带锥形空化器超空泡航行体的空泡与力学特性. 江苏大学学报(自然科学版), 2017, 38(2): 161-167

    Li Fuyuan, Dang Jianjun, Zhang Yuwen. Cavity and hydrodynamic features of supercavitating vehicle with conical cavitator. Journal of Jiangsu University (Natural Science Edition), 2017, 38(2): 161-167 (in Chinese)
    [9] Lee MY. Generation of shock waves by a body during high-speed water entry. [PhD Thesis]. The University of Texas at Austin, 1995
    [10] Truscott T. Cavity Dynamics of Water Entry for Spheres and Ballistic Projectile. Cambridge, Mass, US: MIT, 2009
    [11] 张伟, 郭子涛, 肖新科等. 弹体高速入水特性实验研究. 爆炸与冲击, 2011, 31(6): 579-584 (Zhang Wei, Guo Zitao, Xiao Xinke, et al. Experimental investigations on behaviors of projectile high-speed water entry. Explosion and Shock Waves, 2011, 31(6): 579-584 (in Chinese)
    [12] 王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究. 兵工学报, 2014, 35(12): 1998-2002 (Wang Yun, Yuan Xulong, Lü Ce. Experimental research on curved trajectory of high-speed water-entry missile. Acta Atmamentarii, 2014, 35(12): 1998-2002 (in Chinese) doi: 10.3969/j.issn.1000-1093.2014.12.010
    [13] 袁绪龙, 朱珠. 预置舵角对高速入水弹道和流体动力的影响. 应用力学学报, 2015, 32(1): 11-16 (Yuan Xulong, Zhu Zhu. Influence of preset rudder angle on trajectory and hydro-dynamic at high-speed water-entry. Chinese Journal of Applied Mechanics, 2015, 32(1): 11-16 (in Chinese) doi: 10.11776/cjam.32.01.A001
    [14] 陈诚, 袁绪龙, 邢晓琳等. 预置舵角下超空泡航行体倾斜入水弹道特性研究. 兵工学报, 2018, 39(9): 1780-1785 (Chen Cheng, Yuan Xulong, Xing Xiaolin, et al. Research on the trajectory characteristics of supercavitating vehicle obliquely entering into water at preset rudder angle. Acta Atmamentarii, 2018, 39(9): 1780-1785 (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.09.015
    [15] Chen C, Yuan XL, Liu XY, et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482-494 doi: 10.1016/j.ijnaoe.2018.09.002
    [16] 时素果, 王亚东, 刘乐华等. 预置舵角下超控泡航行体运动过程弹道特性研究. 兵工学报, 2017, 38(10): 1974-1979 (Shi Suguo, Wang Yadong, Liu Lehua, et al. Research on the trajectory characteristics of supercavitating vehicle at preset rudder angle. Acta Atmamentarii, 2017, 38(10): 1974-1979 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.10.013
    [17] 华扬, 施瑶, 潘光等. 非对称头型对航行器入水空泡及弹道特性影响的实验研究. 水动力学研究与进展(A辑). 2020, 1: 61- 67

    Hua Yang, Shi Yao, Pan Guang, et al. Experimental study on the cavity and trajectory of projectile water entry with asymmetric nose shape. Chinese Journal of Hydrodynamics, 2020, 1: 61-67 (in Chinese)
    [18] 王晓辉, 李鹏, 孙士明等. 射弹高速入水尾拍载荷和弹道特性的数值研究. 船舶力学, 2022, 26(8): 1111-1119 (Wang Xiaohui, Li Peng, Sun Shiming, et al. Numerical study on hydrodynamic and ballistic characteristics of projectile’s high-speed water-entry process. Journal of Ship Mechanics, 2022, 26(8): 1111-1119 (in Chinese) doi: 10.3969/j.issn.1007-7294.2022.08.001
    [19] 鱼怡澜, 施瑶, 潘光等. 超空泡航行体高速入水空泡与载荷特性数值分析. 西北工业大学学报, 2022, 40(3): 584-591 (Yu Yilan, Shi Yao, Pan Guang, et al. Numerical analysis of cavitation and impact load characteristics of supercavitating vehicle entering water at high speed. Journal of Northwestern Polytechnical University, 2022, 40(3): 584-591 (in Chinese) doi: 10.3969/j.issn.1000-2758.2022.03.014
    [20] Yao Shi, Guang Pan, Guoxin Yan, et al. Numerical study on the cavity characteristics and impact loads of AUV water entry. Applied Ocean Research, 2019, 89: 44-58 doi: 10.1016/j.apor.2019.05.012
    [21] Wang XH, Shi Y, Pan G, et al. Numerical research on the high-speed water entry trajectories of AUVs with asymmetric nose shapes. Ocean Engineering, 2021, 234(37): 109274
    [22] 梁景奇, 王瑞, 徐保成等. 攻角对高速射弹入水过程影响研究. 兵器装备工程学报, 2020, 41(7): 23-28 (Liang Jingqi, Wang Rui, Xu Baocheng, et al. Research on influence of angle of attack on process of high-speed water-entry projectile. Journal of Ordnance Equipment Engineering, 2020, 41(7): 23-28 (in Chinese) doi: 10.11809/bqzbgcxb2020.07.006
    [23] 秦杨, 易文俊, 管军. 超空泡射弹高速倾斜入水的空化流动数值模拟. 兵器装备工程学报, 2019, 40(7): 99-104 (Qin Yang, Yi Wenjun, Guan Jun. Numerical simulation for cavitation flow of high-speed rotating body oblique entrying into water. Journal of Ordnance Equipment Engineering, 2019, 40(7): 99-104 (in Chinese) doi: 10.11809/bqzbgcxb2019.07.020
    [24] 郝常乐, 党建军, 陈长盛等. 基于双向流固耦合的超空泡射弹入水研究. 力学学报, 2022, 54(3): 678-687 (Hao Changle, Dang Jianjun, Chen Changsheng, et al. Numerical study on water entry process of supercavitating projectile by considering bidirectional fluid structure interaction effect. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 678-687 (in Chinese) doi: 10.6052/0459-1879-21-510
    [25] 杨晓光, 党建军, 王鹏等. 波浪对航行体高速入水载荷特性影响. 兵工学报, 2022, 45(2): 355-362 (Yang Xiaoguang, Dang Jianjun, Wang Peng, et al. The influence of waves on the impact load during high-speed water-entry of a vehicle. Acta Atmamentarii, 2022, 45(2): 355-362 (in Chinese) doi: 10.3969/j.issn.1000-1093.2022.02.013
    [26] Sauer J, Winkler G, Schnerr G. Cavitation and condensation-common aspects of physical modeling and numerical approach. Chemical Engineering & Technology, 2000, 23(8): 663-666
    [27] 王辰, 鹿麟, 祁晓斌等. 超空泡射弹并联入水多相流场与弹道特性研究. 振动与冲击, 2022, 41(10): 292-300 (Wang Chen, Lu Lin, Qi Xiaobin, et al. Multiphase flow field and trajectory characteristics of two supercavitating projectiles in parallel water-entry. Journal of Vibration and Shock, 2022, 41(10): 292-300 (in Chinese) doi: 10.13465/j.cnki.jvs.2022.10.037
    [28] 刘富强, 罗凯, 梁鸿阁等. 回转体滑水航行体流体动力特性研究. 西北工业大学学报, 2021, 39(1): 101-110 (Liu Fuqiang, Luo Kai, Liang Hongge, et al. Research on hydrodynamic characteristics of cylinder planning. Journal of Northwestern Polytechnical University, 2021, 39(1): 101-110 (in Chinese) doi: 10.3969/j.issn.1000-2758.2021.01.013
    [29] 张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学. 北京: 国防工业出版社, 2014

    Zhang Yuwen, Yuan Xulong, Deng Fei. Fluid Dynamics of Supercavitating Underwater Vehicles. Beijing: National Defense Industry Press, 2014 (in Chinese)
    [30] 袁绪龙, 栗敏, 丁旭拓等. 跨介质航行器高速入水冲击载荷特性. 兵工学报, 2021, 42(7): 1440-1449 (Yuan Xulong, Li Min, Ding Xutuo, et al. Impact load characteristics of a trans-media vehicle during high-speed water-entry. Acta Atmamentarii, 2021, 42(7): 1440-1449 (in Chinese) doi: 10.3969/j.issn.1000-1093.2021.07.011
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  110
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-11-26
  • 刊出日期:  2023-02-18

目录

    /

    返回文章
    返回