[1] |
Kahram A, Singh R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. Journal of Sound and Vibration, 1991, 145(2): 239-260 doi: 10.1016/0022-460X(91)90590-G
|
[2] |
Luo ACJ, O'Connor D. Periodic motions with impacting chatter and stick in a gear transmission system. Journal of Vibration and Acoustics, 2009, 131(4): 104-114
|
[3] |
高建设, 崔秉奇, 丁顺良等. 齿轮-轴承传动系统擦边碰撞的动力学特性分析. 振动与冲击, 2022, 41(13): 1-7 (Gao Jianshe, Cui Bingqi, Ding Shunliang et al. Dynamic characteristics analysis of grazing impact of gear-bearing transmission system. Journal of Vibration and Shock, 2022, 41(13): 1-7 (in Chinese) doi: 10.13465/j.cnki.jvs.2022.13.001
|
[4] |
王三民, 沈允文, 董海军. 含摩擦和间隙直齿轮副的混沌与分叉研究. 机械工程学报, 2002, 38(9): 8-11 (Wang Sanmin, Shen Yunwen, Dong Haijun. Chaos and bifurcation analysis of a spur gear pair with combined frictionand clearance. Chinese Journal of Mechanical Engineering, 2002, 38(9): 8-11 (in Chinese) doi: 10.3321/j.issn:0577-6686.2002.09.002
|
[5] |
唐进元, 陈思雨, 钟掘. 一种改进的齿轮非线性动力学模型. 工程力学, 2008, 25(1): 217-223 (Tang Jinyuan, Chen Siyu, Zhong Jue. A improved nonlinear model for a spur gear pair system. Engineering Mechanics, 2008, 25(1): 217-223 (in Chinese)
|
[6] |
陈思雨, 唐进元, 王志伟等. 修形对齿轮系统动力学特性的影响规律. 机械工程学报, 2014, 50(13): 59-65 (Chen Siyu, Tang Jinyuan, Wang Zhiwei et al. Effect of modification on dynamic characteristics of gear transmissions system. Journal of Mechanical Engineering, 2014, 50(13): 59-65 (in Chinese) doi: 10.3901/JME.2014.13.059
|
[7] |
Theodossiades S, Natsiavas S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash. Journal of Sound and Vibration, 2000, 229(2): 287-310 doi: 10.1006/jsvi.1999.2490
|
[8] |
Chang-Jian CW, Shiuh-Ming C. Bifurcation and chaos analysis of spur gear pair with and without nonlinear suspension. Nonlinear Analysis:Real World Applications, 2011, 12: 979-989 doi: 10.1016/j.nonrwa.2010.08.021
|
[9] |
王立华, 李润方, 林腾蛟等. 齿轮系统时变刚度和间隙非线性振动特性研究. 中国机械工程, 2003, 14(13): 1143-1146 (Wang Lihua, Li Runfang, Lin Tengjiao, et al. Research on nonlinear vibration characteristics due to time-varying mesh stiffness and gear backlash in gear system. China Mechanical Engineering, 2003, 14(13): 1143-1146 (in Chinese) doi: 10.3321/j.issn:1004-132X.2003.13.019
|
[10] |
陈思雨, 唐进元, 谢耀东. 齿轮传动系统的非线性冲击动力学行为分析. 振动与冲击, 2009, 28(4): 70-75 (Chen Siyu, Tang Jinyuan, Xie Yaodong. Analysis of nonlinear impact dynamic behavior for a gear pair system with time-varying stiffness and friction. Journal of Vibration and Shock, 2009, 28(4): 70-75 (in Chinese) doi: 10.3969/j.issn.1000-3835.2009.04.016
|
[11] |
唐进元, 熊兴波, 陈思雨. 基于图胞映射方法的单自由度非线性齿轮系统全局特性分析. 机械工程学报, 2011, 47(5): 59-65 (Tang Jinyuan, Xiong Xingbo, Chen Siyu. Analysis of global character of single degree of freedom nonlinear gear system based on digraph cell mapping method. Journal of Mechanical Engineering, 2011, 47(5): 59-65 (in Chinese) doi: 10.3901/JME.2011.05.059
|
[12] |
刘梦军, 沈允文, 董海军. 齿轮系统参数对全局特性影响的研究. 机械工程学报, 2004, 40(11): 58-63 (Liu Mengjun, Shen Yunwen, Dong Haijun. Research on the affection of the gear system parameters on the global character. Chinese Journal of Mechanical Engineering, 2004, 40(11): 58-63 (in Chinese) doi: 10.3321/j.issn:0577-6686.2004.11.011
|
[13] |
Mason JF, Piiroinen PT, Wilson RE, et al. Basins of attraction in non-smooth models of gear rattle. International Journal of Bifurcation and Chaos, 2009, 19: 203-224 doi: 10.1142/S021812740902283X
|
[14] |
Natsiavas S, Theodossiades S, Goudas I. Dynamic analysis of piecewise linear oscillators with time periodic coefficients. International Journal of Non-Linear Mechanics, 2000, 35(1): 53-68 doi: 10.1016/S0020-7462(98)00087-0
|
[15] |
杨绍普, 申永军, 刘献栋. 基于增量谐波平衡法的齿轮系统非线性动力学. 振动与冲击, 2005, 24(3): 40-43 (Yang Shaopu, Shen Yongjun, Liu Xiandong. Nonlinear dynamics of gear system based on incremental harmonic balance method. Journal of Vibration and Shock, 2005, 24(3): 40-43 (in Chinese) doi: 10.3969/j.issn.1000-3835.2005.03.011
|
[16] |
李华, 沈允文, 孙智民. 基于A-算符方法的齿轮系统的分岔与混沌. 机械工程学报, 2002, 38(6): 11-15 (Li Hua, Shen Yunwen, Sun Zhimin. Bifurcation and chaotic behavior of geared system with clearances based on the A-operator method. Chinese Journal of Mechanical Engineering, 2002, 38(6): 11-15 (in Chinese) doi: 10.3321/j.issn:0577-6686.2002.06.003
|
[17] |
郜志英, 沈允文, 李素有. 间隙非线性齿轮系统周期解结构及其稳定性研究. 机械工程学报, 2004, 5: 17-22 (Gao Zhiying, Shen Yunwen, Li Suyou. Research on the periodic solution structure and its stability of nonlinear gear system with clearance. Chinese Journal of Mechanical Engineering, 2004, 5: 17-22 (in Chinese) doi: 10.3321/j.issn:0577-6686.2004.05.004
|
[18] |
Wei S, Han QK, Dong XJ et al. Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty. Nonlinear Dynamics, 2017, 89(1): 49-60 doi: 10.1007/s11071-017-3435-z
|
[19] |
陈思雨, 唐进元. 间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响. 机械工程学报, 2009, 45(8): 119-124 (Chen Siyu, Tang Jinyuan. Effect of backlash on dynamics of spur gear pair system with friction and time-varying stiffness. Chinese Journal of Mechanical Engineering, 2009, 45(8): 119-124 (in Chinese) doi: 10.3901/JME.2009.08.119
|
[20] |
Gou XF, Zhu LY, Chen DL. Bifurcation and chaos analysis of spur gear pair in two-parameter plane. Nonlinear Dynamics, 2015, 79: 2225-2235 doi: 10.1007/s11071-014-1807-1
|
[21] |
苟向锋, 朱凌云, 陈代林等. 参数耦合对单自由度直齿圆柱齿轮系统动态特性影响分析. 振动工程学报, 2017, 30(2): 202-213 (Gou Xiangfeng, Zhu Lingyun, Chen Dailin et al. Analysis of effect of parameters coupling on the dynamic characteristics of a single degree-of-freedom spur gear system. Journal of Vibration Engineering, 2017, 30(2): 202-213 (in Chinese)
|
[22] |
Yang Y, Cao LY, Li H, et al. Nonlinear dynamic response of a spur gear pair based on the modeling of periodic mesh stiffness and static transmission error. Applied Mathematical Modelling, 2019, 72: 444-469 doi: 10.1016/j.apm.2019.03.026
|
[23] |
Chong ASE, Yue Y, Pavlovskaia E, et al. Global dynamics of a harmonically excited oscillator with a play: Numerical studies. International Journal of Non-Linear Mechanics, 2017, 94: 98-108 doi: 10.1016/j.ijnonlinmec.2017.03.015
|
[24] |
陈振阳, 韩修静, 毕勤胜. 离散达芬映射中由边界激变所诱发的复杂的张弛振荡. 力学学报, 2017, 49(6): 1380-1389 (Chen Zhenyang, Han Xiujing, Bi Qinsheng. Complex relaxation oscillation triggered by boundary crisis in the discrete Duffing map. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1380-1389 (in Chinese) doi: 10.6052/0459-1879-17-138
|
[25] |
刘莉, 徐伟, 岳晓乐等. 一类含非黏滞阻尼的Duffing单边碰撞系统的激变研究. 物理学报, 2013, 62(20): 200501 (Liu Li, Xu Wei, Yue Xiaole et al. Global analysis of crises in a Duffing vibro-impact oscillator with non-viscously damping. Acta Physica Sinica, 2013, 62(20): 200501 (in Chinese) doi: 10.7498/aps.62.200501
|
[26] |
石建飞, 苟向锋, 朱凌云. 两空间耦合下齿轮传动系统多稳态特性研究. 力学学报, 2019, 51(5): 1489-1499 (Shi Jianfei, Gou Xiangfeng, Zhu Lingyun. Research on multi-stability characteristics of gear transmission system with two-space coupling. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1489-1499 (in Chinese) doi: 10.6052/0459-1879-19-093
|
[27] |
Shi JF, Gou XF, Zhu LY. Bifurcation of multi-stable behaviors in a two-parameter plane for a non-smooth nonlinear system with time-varying parameters. Nonlinear Dynamics, 2020, 10: 3347-3365
|
[28] |
金俐, 陆启韶, 王琪. 非光滑动力系统Floquet特征乘子的计算方法. 应用力学学报, 2004, 3(21): 21-26 (Jin Li, Lu Qishao, Wang Qi. Calculation methods of floquet multipliers for non-smooth dynamic system. Chinese Journal of Applied Mechanics, 2004, 3(21): 21-26 (in Chinese) doi: 10.3969/j.issn.1000-4939.2004.03.005
|
[29] |
Jiang HB, Chong ASE, Ueda Y, et al. Grazing-induced bifurcations in impact oscillators with elastic and rigid constraints. International Journal of Mechanical Sciences, 2017, 127(7): 204-214
|
[30] |
徐慧东, 谢建华. 一类单自由度分段线性系统的分岔和混沌控制. 振动与冲击, 2008, 27(6): 20-24 (Xu Huidong, Xie Jianhua. Bifurcation and chaos control of a single−degree-of-freedom system with piecewise-linearity. Journal of Vibration and Shock, 2008, 27(6): 20-24 (in Chinese) doi: 10.3969/j.issn.1000-3835.2008.06.006
|
[31] |
Li ZF, Zhu LY, Chen SQ, et al. Study on safety characteristics of the spur gear pair considering time-varying backlash in the established multi-level safety domains. Nonlinear Dynamics, 2022, 109(3): 1297-1324 doi: 10.1007/s11071-022-07467-7
|