EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡波一体乘波飞行器宽速域气动优化设计研究

刘超宇 屈峰 李杰奇 白俊强 刘传振 白鹏 钱战森

刘超宇, 屈峰, 李杰奇, 白俊强, 刘传振, 白鹏, 钱战森. 涡波一体乘波飞行器宽速域气动优化设计研究. 力学学报, 2023, 55(1): 70-83 doi: 10.6052/0459-1879-22-412
引用本文: 刘超宇, 屈峰, 李杰奇, 白俊强, 刘传振, 白鹏, 钱战森. 涡波一体乘波飞行器宽速域气动优化设计研究. 力学学报, 2023, 55(1): 70-83 doi: 10.6052/0459-1879-22-412
Liu Chaoyu, Qu Feng, Li Jieqi, Bai Junqiang, Liu Chuanzhen, Bai Peng, Qian Zhansen. Aerodynamic optimization design of the vortex-shock integrated waverider in wide speed range. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 70-83 doi: 10.6052/0459-1879-22-412
Citation: Liu Chaoyu, Qu Feng, Li Jieqi, Bai Junqiang, Liu Chuanzhen, Bai Peng, Qian Zhansen. Aerodynamic optimization design of the vortex-shock integrated waverider in wide speed range. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 70-83 doi: 10.6052/0459-1879-22-412

涡波一体乘波飞行器宽速域气动优化设计研究

doi: 10.6052/0459-1879-22-412
基金项目: 国家自然科学基金资助项目(11972308)
详细信息
    通讯作者:

    屈峰, 教授, 主要研究方向为计算流体力学、飞行器设计、高超声速空气动力学. E-mail: qufeng@nwpu.edu.cn

  • 中图分类号: V211.3

AERODYNAMIC OPTIMIZATION DESIGN OF THE VORTEX-SHOCK INTEGRATED WAVERIDER IN WIDE SPEED RANGE

  • 摘要: 涡波一体宽速域乘波飞行器通过在低速引入涡效应, 显著改善了传统乘波体在低速状态下的升阻特性, 具有在未来宽速域空天飞行器总体气动设计当中得到广泛应用的巨大潜力. 但是, 该设计方法的研究尚不完善, 特别是在基准流场建立过程中忽略了三维效应、低速效应、黏性效应以及头部/前缘的钝化效应, 因此其高低速气动特性均有优化设计的空间. 针对此问题, 本文结合高保真RANS求解器、自由变形参数化方法、鲁棒的结构网格变形方法、离散伴随方法以及序列二次规划算法, 发展了基于离散伴随的宽速域飞行器气动优化设计方法. 基于上述方法, 针对涡波一体乘波飞行器开展了兼顾低速与高超声速气动性能的三维整机气动优化设计研究, 获得了宽速域优化构型并对其进行了流动机理分析. 结果表明, 相较于初始构型, 宽速域优化构型可以将飞行器高超声速状态下升阻特性略微提升的同时, 显著增强低速状态飞行器背风面的旋涡效应, 进而使飞行器低速状态的升力和升阻比均提升10%以上, 改善了涡波一体宽速域乘波飞行器的高低速气动性能.

     

  • 图  1  涡波一体宽速域乘波飞行器初始构型

    Figure  1.  Initial configuration of the wide-speed-range waverider with vortex-shock effects

    图  2  低速条件数值模拟数据(CFD)与风洞试验数据(exp)对比

    Figure  2.  Comparison between numerical simulation results (CFD) and wind-tunnel experimental (exp) datas at low speed

    图  3  高速条件数值模拟数据(CFD)与风洞试验数据(exp)对比

    Figure  3.  Comparison between numerical simulation results (CFD) and wind-tunnel experimental (exp) datas at high speed

    图  4  涡波一体宽速域乘波飞行器FFD控制框

    Figure  4.  The FFD box of the wide-speed-range waverider with vortex-shock effects

    图  5  基于离散伴随的宽速域飞行器气动优化设计方法流程图

    Figure  5.  The flow chart of the aerodynamic shape optimization design software for the wide-speed-range vehicle based on the discretized adjoint method

    图  6  低速计算网格

    Figure  6.  Low speed computational grids

    图  7  高速计算网格

    Figure  7.  High speed computational grids

    图  8  低速对称面处表面压力系数对比

    Figure  8.  Comparison of surface pressure coefficient on the plane of symmetry at low speed

    图  9  高速对称面处表面压力系数对比

    Figure  9.  Comparison of surface pressure coefficient on the plane of symmetry at high speed

    图  10  低速优化迭代收敛历史(H = 0 km)

    Figure  10.  Convergence history of the multi-point optimization iterations at low speed (H = 0 km)

    图  11  高超声速优化迭代收敛历史(H = 30 km)

    Figure  11.  Convergence history of the multi-point optimization iterations at high speed (H = 30 km)

    图  12  优化前后低速背风面压力分布涡结构对比(H = 0 km, Ma = 0.4)

    Figure  12.  Comparison of Cp distribution and vortex structure on the upper surface before and after optimization at low speed (H = 0 km, Ma = 0.4)

    图  13  优化前后低速下表面压力分布对比(H = 0 km, Ma = 0.4)

    Figure  13.  Comparison of Cp distribution on the lower surface before and after optimization at low speed (H = 0 km, Ma = 0.4)

    图  14  流向各截面位置

    Figure  14.  Four stations of the initial configuration

    图  15  优化前后流向各截面表面压力系数分布与几何外形对比(H = 0 km, Ma = 0.4)

    Figure  15.  Comparison of the Cp distribution and shape before and after optimization (H = 0 km, Ma = 0.4)

    图  16  优化前后涡强度对比

    Figure  16.  Comparison of $Q$ value before and after optimization

    图  17  压力变化明显处涡强度对比

    Figure  17.  Comparison of $Q$ value in the area of obvious pressure change

    图  18  优化前后$Q = 2$等值面速度云图

    Figure  18.  Iso-surface of $Q = 2$ before and after optimization

    图  19  压力明显变化区域流向各截面位置

    Figure  19.  Four new stations in the area of obvious pressure change

    图  20  优化前后流向各截面表面压力系数分布与几何外形对比(H = 0 km, Ma = 0.4)

    Figure  20.  Comparison of the Cp distribution and shape before and after optimization (H = 0 km, Ma = 0.4)

    图  21  优化前后低速升阻比随迎角变化

    Figure  21.  The lift drag ratio with angle of attack at low speed before and after optimization

    图  22  优化前后迎风面压力分布对比(H = 30 km, Ma = 5.0)

    Figure  22.  Comparison of Cp distribution on the lower surface before and after optimization at high speed (H = 30 km, Ma = 5.0)

    图  23  优化前后空间流场对比(H = 30 km, Ma = 5.0)

    Figure  23.  Flow field changes of the wide-speed-range waverider before and after optimization (H = 30 km, Ma = 5.0)

    图  24  优化前后流向各截面表面压力系数分布与几何外形对比(H = 30 km, Ma = 5.0)

    Figure  24.  Comparison of the Cp distribution and shape before and after optimization (H = 30 km, Ma = 5.0)

    24  优化前后流向各截面表面压力系数分布与几何外形对比(H = 30 km, Ma = 5.0) (续)

    24.  Comparison of the Cp distribution and shape before and after optimization (H = 30 km, Ma = 5.0) (continued)

    表  1  初始构型设计参数

    Table  1.   Initial configuration design parameters

    $Ma$$H/{\text{km}}$${\lambda _1}/\left( ^\circ \right)$${\lambda _2}/\left( ^\circ \right)$$\beta /\left( ^\circ \right)$$l/{\text{m}}$$d/{\text{m}}$$r/{\text{mm}}$
    53075501244.82
    下载: 导出CSV

    表  2  伴随方法和有限差分法$ {C_L} $梯度计算结果对比

    Table  2.   Comparison of the calculated gradient of $ {C_L} $ between adjoint method and finite difference method

    ${ {\boldsymbol{x} }_i}$$ {\text{Adjoint}} $$ {\text{FD}} $$\varDelta$
    1−0.0012009543−0.00119905080.16%
    2−0.0016636907−0.00165039440.81%
    3−0.0021754850−0.00216482060.49%
    4−0.0028064119−0.0028072864−0.03%
    5−0.0037619742−0.0037800744−0.48%
    6−0.0038549877−0.00384949380.14%
    7−0.0021948405−0.00218261600.56%
    80.00636899450.0064160544−0.73%
    90.00634755780.0063972767−0.78%
    10−0.0012185973−0.00121501480.29%
    11−0.0016332886−0.00162025730.80%
    12−0.0020717078−0.00206043080.55%
    13−0.0025963844−0.00259378700.10%
    14−0.0033845191−0.0033885600−0.12%
    15−0.0033679694−0.00335651850.34%
    下载: 导出CSV

    表  3  伴随方法和有限差分法$ {C_D} $梯度计算结果对比

    Table  3.   Comparison of the calculated gradient of $ {C_D} $ between adjoint method and finite difference method

    ${ {\boldsymbol{x} }_i}$$ {\text{Adjoint}} $$ {\text{FD}} $$\varDelta$
    1−0.0001784450−0.0001798483−0.78%
    2−0.0002787057−0.00027862740.03%
    3−0.0004033055−0.0004047013−0.34%
    4−0.0005931103−0.0005969683−0.65%
    5−0.0009984554−0.0010007805−0.23%
    6−0.0011902645−0.00118769980.22%
    7−0.0006175966−0.0006188222−0.20%
    80.00139307870.0013985036−0.39%
    90.00164252100.0016481783−0.34%
    10−0.0001240342−0.0001244595−0.34%
    11−0.0002186525−0.00021757360.50%
    12−0.0003205815−0.0003207870−0.06%
    13−0.0004707247−0.0004733808−0.56%
    14−0.0008045053−0.0008050683−0.07%
    15−0.0009910074−0.00098863750.24%
    下载: 导出CSV

    表  4  低速网格无关性验证结果

    Table  4.   The compute results of waverider at low speed

    ${C_L}$${C_D}$$\Delta {C_D}$
    coarse0.345630.073300.4%
    medium0.344790.073310.4%
    fine0.345600.07304
    下载: 导出CSV

    表  5  高速网格无关性验证结果

    Table  5.   The compute results of waverider at high speed

    ${C_L}$${C_D}$$\Delta {C_D}$
    coarse0.120110.025290.2%
    medium0.120570.025440.8%
    fine0.120260.02523
    下载: 导出CSV

    表  6  优化前后升阻力特性对比

    Table  6.   Comparison of the lift and drag characteristics

    $ Ma $OriginalOptimum$\varDelta$
    $Ma = 0.4$${C_L}$0.345630.38737 + 12.1%
    ${C_D}$0.073300.07411 + 1.1%
    ${{{C_L}} \mathord{\left/ {\vphantom {{{C_L}} {{C_D}}}} \right. } {{C_D}}}$4.7155.227 + 10.9%
    $Ma = 5.0$${C_L}$0.120110.12018 + 0.1%
    ${C_D}$0.025290.02526−0.1%
    ${{{C_L}} \mathord{\left/ {\vphantom {{{C_L}} {{C_D}}}} \right. } {{C_D}}}$4.7494.760 + 0.2%
    下载: 导出CSV

    表  7  优化前后压心位置变化情况

    Table  7.   Comparison of the pressure center position

    $ Ma $OriginalOptimum$\varDelta$
    $Ma = 0.4$${C_M}$0.2250.26316.8%
    ${x_{{\text{cp}}}}$64.4%67.2% + 4.3%
    $Ma = 5.0$${C_M}$0.0830.0841.2%
    ${x_{{\text{cp}}}}$68.2%69.1% + 1.3%
    下载: 导出CSV
  • [1] 戴今钊, 汤继斌, 陈海昕. 高超声速飞行器中的乘波设计综述. 战术导弹技术, 2021, 4: 1-15 (Dai Jinzhao, Tang Jibin, Chen Haixin. An overview of waverider design in hypersonic vehicles. Tactical Missile Technology, 2021, 4: 1-15 (in Chinese) doi: 10.16358/j.issn.1009-1300.2021.1.066
    [2] 刘传振, 刘强, 白鹏等. 涡波效应宽速域气动外形设计. 航空学报, 2018, 39(7): 73-81 (Liu Chuanzhen, Liu Qiang, Bai Peng, et al. Planform-controllable waverider design integrating shock and vortex ef-fects. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 73-81 (in Chinese)
    [3] Dietrich K. The Aerodynamic Design of Aircraft. Reston, Virginia: AIAA, 2012: 448
    [4] 易怀喜, 王逗, 李珺等. 涡升力乘波体发展研究综述. 航空工程进展, 2021, 12(6): 1-12 (Yi Huaixi, Wang Dou, Li Jun, et al. Overview on the development research of vortex lift waverider. Advances in Aeronautical Science and Engineering, 2021, 12(6): 1-12 (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.06.01
    [5] Rodi PE. Geometrical relationships for osculating cones and osculating flow field waveriders//The 49th Aerospace Science Meeting. Reston, Virigina: AIAA, 2011
    [6] Rodi PE. Vortex lift waverider configurations//The 50th Aerospace Science Meeting. Reston, Virigina: AIAA, 2012
    [7] 李珺, 易怀喜, 王逗等. 基于投影法的双后掠乘波体气动性能. 航空学报, 2021, 42(9): 178-192 (Li Jun, Yi Huaixi, Wang Dou, et al. Research on aerodynamic performance of double swept waverider based on projection method. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 178-192 (in Chinese)
    [8] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析. 航空学报, 2017, 38(6): 104-114 (Liu Chuanzhen, Bai Peng, Chen Bingyan. Design and property advantages analysis of double swept waverider. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 104-114 (in Chinese)
    [9] 刘传振, 白鹏, 陈冰雁等. 定平面形状乘波体及设计变量影响分析. 宇航学报, 2017, 38(5): 451-458 (Liu Chuanzhen, Bai Peng, Chen Bingyan, et al. Analysis on design variables for planform-controllable waverider. Journal of Astronautics, 2017, 38(5): 451-458 (in Chinese) doi: 10.3873/j.issn.1000-1328.2017.05.002
    [10] Liu CZ, Bai P, Yang YJ, et al. Double swept waverider from osculating-cone method. Journal of Aerospace Engineering, 2018, 31(6): 06018004
    [11] Wang JF, Liu CZ, Bai P, et al. Design methodology of the waverider with a controllable planar shape. Acta Astronautica, 2018, 151(10): 504-510
    [12] Ueno A, Suzuki K. CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina, AIAA, 2008: 288
    [13] Ueno A, Suzuki K. Two-dimensional shape optimization of hypersonic vehicles considering transonic aerodynamic performance. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52(176): 65-73 doi: 10.2322/tjsass.52.65
    [14] 孙祥程, 韩忠华, 柳斐等. 高超声速飞行器宽速域翼型/机翼设计与分析. 航空学报, 2018, 39(6): 31-42 (Sun Xiangcheng, Han Zhonghua, Liu Fei, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 31-42 (in Chinese) doi: 10.7527/S1000-6893.2018.21737
    [15] 张阳, 韩忠华, 柳斐等. 高超声速飞行器宽速域翼型多目标优化设计研究. 气体物理, 2019, 4(4): 26-40

    Zhang Yang, Han Zhonghua, Liu Fei, et al. Multi-objective aerodynamic shape optimization of wide-mach-number-range airfoil. Physics of Gases, 2019, 4(4): 26-40 (in Chinese)
    [16] 张阳, 韩忠华, 柳斐等. 高超声速飞行器宽速域翼型高效多目标优化设计方法研究. 航空科学技术, 2020, 31(11): 14-24 (Zhang Yang, Han Zhonghua, Liu Fei, et al. Efficient multi-objective shape optimization method of hypersonic wide-mach-number-range airfoil. Aeronautical Science & Technology, 2020, 31(11): 14-24 (in Chinese) doi: 10.19452/j.issn1007-5453.2020.11.003
    [17] 张阳, 韩忠华, 周正等. 面向高超声速飞行器的宽速域翼型优化设计. 空气动力学学报, 2021, 39(6): 111-127 (Zhang Yang, Han Zhonghua, Zhou Zheng, et al. Aerodynamic design optimization of wide-Mach-number-range airfoils for hypersonic vehicles. Acta Aerodynamica Sinica, 2021, 39(6): 111-127 (in Chinese) doi: 10.7638/kqdlxxb-2021.0384
    [18] 韩忠华, 许晨舟, 乔建领等. 基于代理模型的高效全局气动优化设计方法研究进展. 航空学报, 2020, 41(5): 30-70 (Han Zhonghua, Xu Chenzhou, Qiao Jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 30-70 (in Chinese)
    [19] 夏陈超. 基于CFD的飞行器高保真度气动外形优化设计方法. [博士论文]. 杭州: 浙江大学, 2016

    Xia Chengchao. CFD-based high-fidelity aerodynamic shape optimization design method for aircraft. [PhD Thesis]. Hangzhou: Zhejiang University, 2016 (in Chinese))
    [20] 苗萌, 曾鹏, 阎超等. 基于替代模型的三维后体尾喷管优化设计. 空气动力学学报, 2013, 31: 641-646 (Miao Meng, Zeng Peng, Yan Chao, et al. Optimization design of 3D rear body tail nozzle based on alternative model. Acta Aerodynamica Sinica, 2013, 31: 641-646 (in Chinese) doi: 10.7638/kqdlxxb-2012.0011
    [21] 高正红, 王超. 飞行器气动外形设计方法研究与进展. 空气动力学学报, 2017, 35: 516-528 (Gao Zhenghong, Wang Chao. Research and progress on aerodynamic shape design methods of aircraft. Acta Aerodynamica Sinica, 2017, 35: 516-528 (in Chinese) doi: 10.7638/kqdlxxb-2017.0058
    [22] 黄江涛, 周铸, 刘刚等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究. 航空学报, 2018, 39(5): 101-112 (Huang Jiang tao, Zhou Zhu, Liu Gang, et al. Numerical study of aerodynamic/structural multi-disciplinary delay coupled adjoint system for aircraft. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 101-112 (in Chinese)
    [23] Tincher D, Lane J. On the design of a hypersonic waverider test bed vehicle: a first step to outer planet exploration. AIAA 92-0308, 1992
    [24] 刘超宇, 屈峰, 孙迪等. 基于离散伴随的高超声速密切锥乘波体气动优化设计, 出版中, http://kns.cnki.net/kcms/detail/11.1929.V.20220111.1647.020.html.2022-1-4

    Liu Chaoyu, Qu Feng, Sun Di, et al. Discretized adjoint based aerodynamic optimization design for the hypersonic osculating-cone waverider, in press, http://kns.cnki.net/kcms/detail/11.1929.V.20220111.1647.020.html.2022-1-4 (in Chinese))
    [25] Qu F, Chen JJ, Sun D, et al, A new all-speed flux scheme for the Euler equations. Computers and Mathematic with Applications, 2019, 77(4): 1216-1231
    [26] Chu J, Luckring JM. Experimental surface pressure data obtained on 65◦ delta wing across Reynolds number and Mach number ranges. NASA Langley Technical Report Server, 1996
    [27] 刘传振, 孟旭飞, 刘荣健, 等. 双后掠乘波体高超声速试验与数值分析. 航空学报, 2022, 43(9): 374-385 (Liu Chuanzhen, Meng Xufei, Liu Rongjian, et al. Experimental and numerical investigation for hypersonic performance of double swept waverider. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 374-385 (in Chinese) doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209023
    [28] 白俊强, 雷锐午, 杨体浩等. 基于伴随理论的大型客机气动优化设计研究进展. 航空学报, 2019, 40(1): 103-120 (Bai Junqiang, Lei Ruiwu, Yang Tihao, et al. Progress of adjoint based aerodynamic optimization design for large civil airceaft. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 103-120 (in Chinese)
    [29] Sederberg TW, Parry SR. Free-form deformation of solid geometric models. Acm Siggraph Computer Graphics, 1986, 20(4): 151-160 doi: 10.1145/15886.15903
    [30] Samareh JA. Aerodynamic shape optimization based on free-form deformation//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics, 2004
    [31] Hunt J, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases 2, 1988
    [32] Marcel L, Olivier M, Pierre C. Large-eddy simulation of turbulence. SIAM Review, 2007, 49(2): 340-342
  • 加载中
图(25) / 表(7)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  156
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 录用日期:  2022-11-14
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2023-01-04

目录

    /

    返回文章
    返回