SIMULATION OF DYNAMIC WETTING EFFECT DURING GAS-LIQUID SPONTANEOUS IMBIBITION BASED ON MODIFIED LBM
-
摘要: 微通道内气液自发渗吸是广泛发生在自然界及诸多工业领域的物理现象, 而动态接触角是影响整个渗吸过程的关键因素. 针对该问题, 本文使用改进的伪势多相流格子玻尔兹曼方法(LBM), 直接捕捉微通道内气液自发渗吸过程中的实时接触角, 并分析接触角的动态变化特性及其对渗吸长度的影响. 首先, 本文在原始的伪势多相流LBM的基础上耦合Peng-Robinson (PR)状态方程, 改进流体−流体作用力以及流−固作用力格式, 并采用精确差分方法将外力添加至LBM框架中. 然后, 通过校准模型的热力学一致性, 模拟测试界面张力, 静态平衡接触角等界面现象验证了模型的准确性. 最后, 基于建立的模拟方法, 在水平方向上模拟微通道内气液自发渗吸过程. 结果表明: 渗吸过程中的接触角呈现动态变化特征, 在渗吸初期, 因受到惯性力的影响存在较大波动; 随着渗吸距离的增大, 其逐渐减小并趋近于静态平衡接触角. 渗吸过程中的接触角与微通道尺寸及静态接触角有关, 随着微通道宽度增大, 实时的动态接触角与静态接触角相差大; 随着静态接触角增大, 实时的动态接触角与静态接触角的相差增大. 此外, 忽略动态接触角的Lucas-Washburn (LW) 方程所预测的弯液面位置与模拟结果存在一定偏差, 利用模拟得到实时动态接触角数据可以直接用于校正LW方程, 校正后的LW方程预测的弯液面位置与模拟结果基本一致.
-
关键词:
- 气液自发渗吸 /
- 格子玻尔兹曼方法 /
- 动态接触角 /
- 微通道 /
- Lucas-Washburn方程
Abstract: Gas-liquid spontaneous imbibition in microchannels is a widely occurring physical phenomenon in nature and many industrial fields. The dynamic contact angle is the key factor affecting the whole gas-liquid imbibition process. In this work, we use a modified pseudopotential multiphase flow lattice Boltzmann method (LBM) to capture the real-time contact angle during gas-liquid spontaneous imbibition in microchannels and analyze the dynamic characteristics of the contact angle and its effects on the imbibition length. Firstly, we coupled the Peng-Robinson (PR) equation of state to the original pseudopotential multiphase flow LBM, improved the fluid-fluid interaction force and fluid-solid interaction force formats, and added the external forces to the LBM framework by using the exact difference method. Then, the accuracy of the model was verified by calibrating the thermodynamic consistency of the model and simulating interfacial phenomena such as interfacial tension and static equilibrium contact angles. Finally, based on the established simulation method, the spontaneous gas-liquid percolation process in the microchannel is simulated in the horizontal direction. The results show that the contact angle in the imbibition process is dynamic and varies greatly in the early stage of imbibition due to the inertia force. With the further increase of the imbibition distance, it gradually decreases and tends to the static equilibrium contact angle. The contact angle in the imbibition process is related to the microchannel size and the static contact angle. As the width of the microchannel increases, the difference between the dynamic contact angle and the static contact angle in real-time increases; as the static contact angle increases, the difference between the dynamic contact angle and the static contact angle in real-time increases. In addition, the Lucas-Washburn (LW) equation, which ignores the dynamic contact angle, predicts the position of the meniscus is different from the simulated results. The real-time dynamic contact angle data obtained from the simulations can be directly applied to correct the LW equation, and the corrected LW equation predicts the position of the meniscus in general agreement with the simulated results. -
表 1 模型参数
Table 1. Model parameters
T/Tc σ θ0 ρg/ρl μg/μl 0.7 0.286 35° 0.11/7.57 0.018/1.26 -
[1] 蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2012, 42(6): 735-754 (Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012, 42(6): 735-754 (in Chinese) doi: 10.6052/1000-0992-11-096 [2] Cai JC, Jin TX, Kou JS, et al. Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir, 2021, 37(5): 1623-1636 doi: 10.1021/acs.langmuir.0c03134 [3] 唐洪明, 朱柏宇, 王茜等. 致密砂岩气层水锁机理及控制因素研究. 中国科学:技术科学, 2018, 4848(5): 537-547 (Tang Hongming, Zhu Baiyu, Wang Xi, et al. Mechanism and control factors of water blocking in tight sandstone gas reservoir. Scientia Sinica:Technologica, 2018, 4848(5): 537-547 (in Chinese) [4] 申颍浩, 葛洪魁, 宿帅等. 页岩气储层的渗吸动力学特性与水锁解除潜力. 中国科学: 物理学, 力学, 天文学, 2017, 47(11): 84-94 (Shen Yinghao, Ge Hongkui, Su Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability. Scientia Sinica:Physica,Mechanica &Astronomica, 2017, 47(11): 84-94 (in Chinese) [5] 宋付权, 张翔, 黄小荷等. 纳米尺度下页岩基质中的页岩气渗流及渗吸特征. 中国科学: 技术科学, 2016, 46(2): 120-126 (Song Fuquan, Zhang Xiang, Huang Xiaohe, et al. The flow characteristics of shale gas through shale rock matrix in nano-scale and water imbibition on shale sheets. Scientia Sinica: Technologica, 2016, 46(2): 120-126 (in Chinese) doi: 10.1360/N092016-00011 [6] Zhang ZE, Cai JC, Chen F, et al. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renewable Energy, 2018, 118: 527-535 doi: 10.1016/j.renene.2017.11.031 [7] 袁士义, 马德胜, 李军诗等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望. 石油勘探与开发, 2022, 49(4): 1-7 (Yuan Shiyi, Ma Desheng, Li Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization. Petroleum Exploration and Development, 2022, 49(4): 1-7 (in Chinese) doi: 10.11698/PED.20220212 [8] 朱思南, 孙军昌, 魏国齐等. 水侵气藏型储气库注采相渗滞后数值模拟修正方法. 石油勘探与开发, 2021, 48(1): 166-174 (Zhu Sinan, Sun Junchang, Wei Guoqi, et al. Numerical simulation-based correction of relative permeability hysteresis in water-invaded underground gas storage during multi-cycle injection and production. Petroleum Exploration and Development, 2021, 48(1): 166-174 (in Chinese) doi: 10.11698/PED.2021.01.15 [9] Lucas R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift, 1918, 23(1): 15-22 doi: 10.1007/BF01461107 [10] Washburn EW. The dynamics of capillary flow. Physical Review, 1921, 17(3): 273-283 doi: 10.1103/PhysRev.17.273 [11] 杨敏, 曹炳阳. 微纳通道中牛顿流体毛细流动的研究进展. 科学通报, 2016, 61(14): 1574-1584 (Yang Min, Cao Bingyang. Advances of capillary filling of Newtonian fluids in micro- and nanochannels. Chinese Science Bulletin, 2016, 61(14): 1574-1584 (in Chinese) doi: 10.1360/N972015-00783 [12] 杨敏, 曹炳阳, 杨纯等. 纳米通道中毛细流动的实验研究. 工程热物理学报, 2019, 40(9): 2151-2155 (Yang Min, Cao Bingyang, Yang Chun, et al. Experimental study on the capillary filling in nanochannels. Journal of Engineering Thermophysics, 2019, 40(9): 2151-2155 (in Chinese) [13] Ding HY, Song FQ, Hu X, et al. Investigation of non-Newtonian characteristics of water flow in micro-/nanochannels and tight reservoirs. Geofluids, 2022, 2022: 1523287 [14] Wang Y, Song FQ, Zhu WY, et al. Flow characteristics of silicon oil in nanochannels. Journal of Hydrodynamics, 2021, 33(6): 1282-1290 doi: 10.1007/s42241-021-0102-0 [15] Hamraoui A, Thuresson K, Nylander T, et al. Can a dynamic contact angle be understood in terms of a friction coefficient? Journal of Colloid and Interface Science, 2000, 226(2): 199-204 doi: 10.1006/jcis.2000.6830 [16] Heshmati M, Piri M. Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections. Langmuir, 2014, 30(47): 14151-14162 doi: 10.1021/la501724y [17] Tian WB, Wu KL, Chen ZX, et al. Mathematical model of dynamic imbibition in nanoporous reservoirs. Petroleum Exploration and Development, 2022, 49(1): 170-178 doi: 10.1016/S1876-3804(22)60013-2 [18] Siebold A, Nardin M, Schultz J, et al. Effect of dynamic contact angle on capillary rise phenomena. Colloids and Surfaces A: PhysicoChemical and Engineering Aspects, 2000, 161(1): 81-87 [19] Kim H, Lim JH, Lee K, et al. Direct measurement of contact angle change in capillary rise. Langmuir, 2020, 36(48): 14597-14606 doi: 10.1021/acs.langmuir.0c02372 [20] Blake TD, Haynes JM. Kinetics of liquid-liquid displacement. Journal of Colloid and Interface Science, 1969, 30(3): 421-423 doi: 10.1016/0021-9797(69)90411-1 [21] Tian WB, Wu KL, Chen ZX, et al. Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory. Journal of Colloid and Interface Science, 2020, 579: 470-478 doi: 10.1016/j.jcis.2020.06.101 [22] Tian WB, Wu KL, Chen ZX, et al. Effect of dynamic contact angle on spontaneous capillary-liquid-liquid imbibition by molecular kinetic theory. SPE Journal, 2021, 26(04): 2324-2339 doi: 10.2118/205490-PA [23] 李庆, 余悦, 唐诗. 多相格子Boltzmann方法及其在相变传热中的应用. 科学通报, 2020, 65(17): 1677-1693 (Li Qing, Yu Yue, Tang Shi. Multiphase lattice Boltzmann method and its applications in phase-change heat transfer. Chinese Science Bulletin, 2020, 65(17): 1677-1693 (in Chinese) doi: 10.1360/TB-2019-0769 [24] 白冰, 张涛, 李汉卿等. 基于不可压LBM的汽液两相流数值研究. 工程热物理学报, 2020, 41(8): 1952-1959 (Bai Bing, Zhang Tao, Li Hanqing, et al. A Simulated Study on Liquid-gas Flow Based on Incompressible LBM Model. Journal of Engineering Thermophysics, 2020, 41(8): 1952-1959 (in Chinese) [25] Moradi B, Ghasemi S, Hosseini Moghadam A, et al. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method. Meccanica, 2021, 56(12): 2961-2977 doi: 10.1007/s11012-021-01426-z [26] Raiskinmäki P, Shakib-Manesh A, Jäsberg A, et al. Lattice-Boltzmann simulation of capillary rise dynamics. Journal of Statistical Physics, 2002, 107(1): 143-158 [27] Wolf FG, Dos Santos LOE, Philippi PC. Capillary rise between parallel plates under dynamic conditions. Journal of Colloid and Interface Science, 2010, 344(1): 171-179 doi: 10.1016/j.jcis.2009.12.023 [28] Lu G, Wang XD, Duan YY. Study on initial stage of capillary rise dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433: 95-103 [29] Wang DD, Liu PJ, Wang JX, et al. Direct numerical simulation of capillary rise in microtubes with different cross-sections. Acta Physica Polonica, A, 2019, 135(3): 532-538 [30] Chen L, Kang QJ, Mu YT, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014, 76: 210-236 doi: 10.1016/j.ijheatmasstransfer.2014.04.032 [31] Cavaccini G, Pianese V, Jannelli A, et al. One-dimensional mathematical and numerical modeling of liquid dynamics in a horizontal capillary. Journal of Computational Methods in Sciences and Engineering, 2009, 9(1-2): 3-16 doi: 10.3233/JCM-2009-0252 [32] Kolliopoulos P, Jochem KS, Lade Jr RK, et al. Capillary flow with evaporation in open rectangular microchannels. Langmuir, 2019, 35(24): 8131-8143 doi: 10.1021/acs.langmuir.9b00226 [33] Ouali FF, McHale G, Javed H, et al. Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluidics and Nanofluidics, 2013, 15(3): 309-326 doi: 10.1007/s10404-013-1145-5 [34] Li Q, Luo KH, Kang QJ, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 2016, 52: 62-105 doi: 10.1016/j.pecs.2015.10.001 [35] Shan XW, Chen HD. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815 doi: 10.1103/PhysRevE.47.1815 [36] Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18(4): 042101 doi: 10.1063/1.2187070 [37] Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 2012, 53: 93-104 [38] Mukherjee A, Basu DN, Mondal PK. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Physical Review E, 2021, 103(5): 053302 doi: 10.1103/PhysRevE.103.053302 [39] 张晟庭, 李靖, 陈掌星等. 气液非混相驱替过程中的卡断机理及模拟研究. 力学学报, 2022, 54(5): 1429-1442 (Zhang Shengting, Li Jing, Chen Zhangxing, et al. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 (in Chinese) [40] Li Q, Luo KH, Kang QJ, et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 2014, 90(5): 053301 doi: 10.1103/PhysRevE.90.053301 [41] Kupershtokh AL, Medvedev DA, Karpov DI. On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 2009, 58(5): 965-974 [42] Huang JW, Yin XL, Killough J. Thermodynamic consistency of a pseudopotential lattice Boltzmann fluid with interface curvature. Physical Review E, 2019, 100(5): 053304 doi: 10.1103/PhysRevE.100.053304 [43] Huang HB, Krafczyk M, Lu XY. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Physical Review E, 2011, 84(4): 046710 doi: 10.1103/PhysRevE.84.046710 [44] Wen BH, Huang BF, Qin ZR, et al. Contact angle measurement in lattice Boltzmann method. Computers & Mathematics with Applications, 2018, 76(7): 1686-1698 [45] Stroberg W, Keten S, Liu WK. Hydrodynamics of capillary imbibition under nanoconfinement. Langmuir, 2012, 28(40): 14488-14495 doi: 10.1021/la302292w [46] Ruiz-Gutiérrez É, Armstrong S, Lévêque S, et al. The long cross-over dynamics of capillary imbibition. Journal of Fluid Mechanics, 2022, 939: A39 [47] Berthier J, Gosselin D, Delapierre G. Spontaneous capillary flow: should a dynamic contact angle be taken into account? Sensors & Transducers, 2015, 191(8): 40 -