EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机器人单足系统沙土跳跃刚−散耦合动力学分析

孙昊 刘铸永 刘锦阳

孙昊, 刘铸永, 刘锦阳. 机器人单足系统沙土跳跃刚−散耦合动力学分析. 力学学报, 2022, 54(12): 3486-3495 doi: 10.6052/0459-1879-22-405
引用本文: 孙昊, 刘铸永, 刘锦阳. 机器人单足系统沙土跳跃刚−散耦合动力学分析. 力学学报, 2022, 54(12): 3486-3495 doi: 10.6052/0459-1879-22-405
Sun Hao, Liu Zhuyong, Liu Jinyang. Rigid-discrete coupling dynamic analysis of robot mono-pedal system jumping in sand. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3486-3495 doi: 10.6052/0459-1879-22-405
Citation: Sun Hao, Liu Zhuyong, Liu Jinyang. Rigid-discrete coupling dynamic analysis of robot mono-pedal system jumping in sand. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3486-3495 doi: 10.6052/0459-1879-22-405

机器人单足系统沙土跳跃刚−散耦合动力学分析

doi: 10.6052/0459-1879-22-405
基金项目: 国家自然科学基金资助项目(12272222, 11932001, 11772188)
详细信息
    作者简介:

    刘铸永, 副研究员, 主要研究方向: 多体系统动力学. E-mail: zhuyongliu@sjtu.edu.cn

  • 中图分类号: O313.7

RIGID-DISCRETE COUPLING DYNAMIC ANALYSIS OF ROBOT MONO-PEDAL SYSTEM JUMPING IN SAND

  • 摘要: 在行星探索过程中涉及探测器在星壤上着陆、运动以及收集、存储某些样本材料等问题, 因此需要建立探测机器人在沙土上运动的动力学模型, 从而优化其系统构型. 近年来, 对跳跃型探测机器人研究得到了越多越多的关注. 本文采用离散元法对颗粒场进行建模, 以及采用多体动力学方法对机械系统进行建模, 对机器人单足系统在沙土上的跳跃问题进行耦合动力学仿真分析. 基于经典土力学Prandtl-Reissne理论, 从颗粒场受压分层的形式和动量传递出发, 对描述颗粒侵入阻力的惯性力动阻力项进行了修正, 提出了一种修正的Poncelet公式. 通过与离散元仿真结果对比, 说明所提出修正公式比原始的Poncelet公式更准确地计算了机械足受到的沙土侵入阻力, 尤其在达到一定侵入深度表现出更好的收敛性. 最后分析了机械腿足部的不同尺寸和形状对沙土中跳跃效果的影响, 给出了锥形足部和柱形足部的体积对跳跃效果影响的近似计算公式. 本研究将拓展刚−散耦合动力学理论, 并且为新型探测器在行星土壤上运动的系统设计提供技术支撑.

     

  • 图  1  单足机器人系统建模[34]

    Figure  1.  Single-leg robot system modeling[34]

    图  2  颗粒间接触形式: (a)无黏接触, 颗粒接触区域受挤压变形; (b)有黏接触, 颗粒接触区域受挤压表面粘连

    Figure  2.  The contact forms between particles. (a) Non viscous contact: the particle contact area is extruded; (b) viscous contact: the particle contact area is adhered by the extruded surface

    图  3  Prandtl-Reissner理论足底下压颗粒场时颗粒场分层示意图

    Figure  3.  Schematic diagram of soil stratification under pressure of downforce process based on Prandtl-Reissner theory

    4  Poncelet公式修正前后沙土阻力对比

    4.  Comparison of dynamic response using modified Poncelet formula or not

    图  5  修正Poncelet公式参数分析

    Figure  5.  Parameter analysis of modified Poncelet

    5  修正Poncelet公式参数分析(续)

    5.  Parameter analysis of modified Poncelet (continued)

    图  6  足部直径与各动力学响应指标的关系

    Figure  6.  The relationship between the foot diameter and each dynamic response

    图  7  颗粒场分层和足部在压缩颗粒场阶段速度变化

    Figure  7.  Stratification diagram of the particle field, and foot velocity variation in the stage of compressing particle field

    图  8  杆身最大跳跃高度与锥形、柱形足部体积关系

    Figure  8.  The relationship between the maximum jumping height of the rod and the conical or cylindrical foot volume in the particle field

  • [1] Kilic C, Martinez RB, Tatsch CA. NASA space robotics challenge 2 qualification round: an approach to autonomous lunar rover operations. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(12): 24-41 doi: 10.1109/MAES.2021.3115897
    [2] Zou M, Zhu J, Wang K, et al. Design and mechanical behavior evaluation of flexible metal wheel for crewed lunar rover. Acta Astronautica, 2020, 176: 69-76 doi: 10.1016/j.actaastro.2020.06.010
    [3] Hirota T, Taniguchi H. Jumping mechanism using shape memory alloy actuators for a lunar rover//IEEE/SICE International Symposium on System Integration (SII), 2020: 1335-1339
    [4] Lund T. Lunar roving vehicle and exploration of the moon//Early Exploration of the Moon, Tom Lurd, 2018: 303-324
    [5] Malik V, Srivastava S, Gupta S. A novel review on shape memory alloy and their applications in extraterrestrial roving missions. Materials Today, 2021, 44: 4961-4965
    [6] Wang X, Liu YF, Zhou R, et al. Dynamic modeling and path planning of jump-wheeled lunar rover//36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2021, 9486667
    [7] Alex E. Future rover concepts//Planetary Rovers. New York: Springer, 2016: 541-561
    [8] de J Mateo Sanguino T. 50 years of rovers for planetary exploration: A review for future directions. Robotics and Autonomous Systems, 2017, 94: 172-185
    [9] Wang M, Wang D, Socolar J, et al. Jamming by shear in a dilating granular system. Granular Matter, 2019, 21: 102 doi: 10.1007/s10035-019-0951-1
    [10] Das P, Puri S, Schwartz M. Intruder dynamics in a frictional granular fluid: A molecular dynamics study. Physical Review E, 2020, 102(4-1): 042905
    [11] Dapeng BI, Zhang J, Chakraborty B, et al. Jamming by shear. Nature, 2011, 480: 355-358 doi: 10.1038/nature10667
    [12] Sánchez R. Granular dynamics and gravity. Soft Matter, 2020, 16: 9253-9261 doi: 10.1039/D0SM01203C
    [13] Majmudar T, Sperl M, Luding S, et al. Jamming transition in granular systems. Physical Review Letters, 2007, 98: 058001 doi: 10.1103/PhysRevLett.98.058001
    [14] Henkes S, Hecke M, Saarloos W. Critical jamming of frictional grains in the generalized isostaticity picture. Europhysics Letters, 2010, 90: 14003 doi: 10.1209/0295-5075/90/14003
    [15] Chen Z, Jiang L, Qiu M, et al. CFD-DEM simulation of spouted bed dynamics under high temperature with an adhesive model. Energies, 2021, 14: 1-20
    [16] Oliveira D, Wuc CL, Nandakumar K. Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics. Powder Technology, 2020, 363: 745-756 doi: 10.1016/j.powtec.2020.01.016
    [17] Guo Y, Curtis JS. Discrete element method simulations for complex granular flows. Annual Review of Fluid Mechanics, 2015, 47: 21-46 doi: 10.1146/annurev-fluid-010814-014644
    [18] Hou QF, Dong KJ, Yu AB. DEM study of the flow of cohesive particles in a screw feeder. Powder Technology, 2014, 256: 529-539 doi: 10.1016/j.powtec.2014.01.062
    [19] Bester CS, Behringer RP. Collisional model of energy dissipation in three-dimensional granular impact. Physical Review E, 2017, 95: 032906 doi: 10.1103/PhysRevE.95.032906
    [20] Seguin A, Bertho Y, Gondret P. Influence of confinement on granular penetration by impact. Physical Review E, 2008, 78: 010301
    [21] 彭政. 颗粒介质的阻力形式研究. [博士论文]. 北京: 中国科学院物理研究所, 2006

    Peng Zheng. Study on the form of drag force in granular medium. [PhD Thesis]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2006 (in Chinese))
    [22] Kang W, Feng Y, Liu CS. Archimedes' law explains penetration of solids into granular media. Nature Communications, 2018, 9(1): 1101 doi: 10.1038/s41467-018-03344-3
    [23] Nagel SR. Experimental soft-matter science. Reviews of Modern Physics, 2017, 89: 025002 doi: 10.1103/RevModPhys.89.025002
    [24] Li C, Zhang T, Goldman DI. A terradynamics of legged locomotion on granular media. Science, 2013, 339: 1408-1412 doi: 10.1126/science.1229163
    [25] Kamrin K, Koval G. Nonlocal constitutive relation for steady granular flow. Physical Review Letters, 2012, 108: 178301 doi: 10.1103/PhysRevLett.108.178301
    [26] 杨传潇, 丁亮, 唐德威等. 机器人单足系统-沙土塑性接触力学建模及验证. 机器人, 2019, 41: 473-482 (Yang Chuanxiao, Ding Liang, Tang Dewei, et al. Modeling and verification of plastic interaction mechanics between robotic single-legged system and sand. Robot, 2019, 41: 473-482 (in Chinese)
    [27] Krizou N, Clark AH. Power law scaling of early-stage forces during granular impact. Physical Review Letters, 2019, 124: 178002
    [28] Clark AH, Kondic L, Behringer RP. Steady flow dynamics during granular impact. Physical Review E, 2016, 93(5): 050901 doi: 10.1103/PhysRevE.93.050901
    [29] Bless S, Peden B, Guzman I, et al. Poncelet coefficients of granular media. Dynamic Behavior of Materials, 2014, 1: 373-380
    [30] Cheng B, Yu Y, Hexi B. Collision-based understanding of the force law in granular impact dynamics. Physical Review E, 2018, 98: 012901 doi: 10.1103/PhysRevE.98.012901
    [31] Omidvar M, Iskander M, Bless S. Stress-strain behavior of sand at high strain rates. International Journal of Impact Engineering, 2012, 49: 192-213 doi: 10.1016/j.ijimpeng.2012.03.004
    [32] Katsuragi H, Durian DJ. Drag force scaling for penetration into granular media. Physical Review E, 2013, 87(5): 052208 doi: 10.1103/PhysRevE.87.052208
    [33] Katsuragi H, Durian DJ. Unified force law for granular impact cratering. Nature Physics, 2007, 3: 420-423 doi: 10.1038/nphys583
    [34] Aguilar J, Goldman D. Robophysical study of jumping dynamics on granular media. Nature Physics, 2016, 12: 278-283 doi: 10.1038/nphys3568
    [35] Mindlin RD. Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 1949, 16: 259-268 doi: 10.1115/1.4009973
  • 加载中
图(10)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  56
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 录用日期:  2022-10-26
  • 网络出版日期:  2022-10-27
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回