[1] |
Kilic C, Martinez RB, Tatsch CA. NASA space robotics challenge 2 qualification round: an approach to autonomous lunar rover operations. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(12): 24-41 doi: 10.1109/MAES.2021.3115897
|
[2] |
Zou M, Zhu J, Wang K, et al. Design and mechanical behavior evaluation of flexible metal wheel for crewed lunar rover. Acta Astronautica, 2020, 176: 69-76 doi: 10.1016/j.actaastro.2020.06.010
|
[3] |
Hirota T, Taniguchi H. Jumping mechanism using shape memory alloy actuators for a lunar rover//IEEE/SICE International Symposium on System Integration (SII), 2020: 1335-1339
|
[4] |
Lund T. Lunar roving vehicle and exploration of the moon//Early Exploration of the Moon, Tom Lurd, 2018: 303-324
|
[5] |
Malik V, Srivastava S, Gupta S. A novel review on shape memory alloy and their applications in extraterrestrial roving missions. Materials Today, 2021, 44: 4961-4965
|
[6] |
Wang X, Liu YF, Zhou R, et al. Dynamic modeling and path planning of jump-wheeled lunar rover//36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2021, 9486667
|
[7] |
Alex E. Future rover concepts//Planetary Rovers. New York: Springer, 2016: 541-561
|
[8] |
de J Mateo Sanguino T. 50 years of rovers for planetary exploration: A review for future directions. Robotics and Autonomous Systems, 2017, 94: 172-185
|
[9] |
Wang M, Wang D, Socolar J, et al. Jamming by shear in a dilating granular system. Granular Matter, 2019, 21: 102 doi: 10.1007/s10035-019-0951-1
|
[10] |
Das P, Puri S, Schwartz M. Intruder dynamics in a frictional granular fluid: A molecular dynamics study. Physical Review E, 2020, 102(4-1): 042905
|
[11] |
Dapeng BI, Zhang J, Chakraborty B, et al. Jamming by shear. Nature, 2011, 480: 355-358 doi: 10.1038/nature10667
|
[12] |
Sánchez R. Granular dynamics and gravity. Soft Matter, 2020, 16: 9253-9261 doi: 10.1039/D0SM01203C
|
[13] |
Majmudar T, Sperl M, Luding S, et al. Jamming transition in granular systems. Physical Review Letters, 2007, 98: 058001 doi: 10.1103/PhysRevLett.98.058001
|
[14] |
Henkes S, Hecke M, Saarloos W. Critical jamming of frictional grains in the generalized isostaticity picture. Europhysics Letters, 2010, 90: 14003 doi: 10.1209/0295-5075/90/14003
|
[15] |
Chen Z, Jiang L, Qiu M, et al. CFD-DEM simulation of spouted bed dynamics under high temperature with an adhesive model. Energies, 2021, 14: 1-20
|
[16] |
Oliveira D, Wuc CL, Nandakumar K. Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics. Powder Technology, 2020, 363: 745-756 doi: 10.1016/j.powtec.2020.01.016
|
[17] |
Guo Y, Curtis JS. Discrete element method simulations for complex granular flows. Annual Review of Fluid Mechanics, 2015, 47: 21-46 doi: 10.1146/annurev-fluid-010814-014644
|
[18] |
Hou QF, Dong KJ, Yu AB. DEM study of the flow of cohesive particles in a screw feeder. Powder Technology, 2014, 256: 529-539 doi: 10.1016/j.powtec.2014.01.062
|
[19] |
Bester CS, Behringer RP. Collisional model of energy dissipation in three-dimensional granular impact. Physical Review E, 2017, 95: 032906 doi: 10.1103/PhysRevE.95.032906
|
[20] |
Seguin A, Bertho Y, Gondret P. Influence of confinement on granular penetration by impact. Physical Review E, 2008, 78: 010301
|
[21] |
彭政. 颗粒介质的阻力形式研究. [博士论文]. 北京: 中国科学院物理研究所, 2006Peng Zheng. Study on the form of drag force in granular medium. [PhD Thesis]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2006 (in Chinese))
|
[22] |
Kang W, Feng Y, Liu CS. Archimedes' law explains penetration of solids into granular media. Nature Communications, 2018, 9(1): 1101 doi: 10.1038/s41467-018-03344-3
|
[23] |
Nagel SR. Experimental soft-matter science. Reviews of Modern Physics, 2017, 89: 025002 doi: 10.1103/RevModPhys.89.025002
|
[24] |
Li C, Zhang T, Goldman DI. A terradynamics of legged locomotion on granular media. Science, 2013, 339: 1408-1412 doi: 10.1126/science.1229163
|
[25] |
Kamrin K, Koval G. Nonlocal constitutive relation for steady granular flow. Physical Review Letters, 2012, 108: 178301 doi: 10.1103/PhysRevLett.108.178301
|
[26] |
杨传潇, 丁亮, 唐德威等. 机器人单足系统-沙土塑性接触力学建模及验证. 机器人, 2019, 41: 473-482 (Yang Chuanxiao, Ding Liang, Tang Dewei, et al. Modeling and verification of plastic interaction mechanics between robotic single-legged system and sand. Robot, 2019, 41: 473-482 (in Chinese)
|
[27] |
Krizou N, Clark AH. Power law scaling of early-stage forces during granular impact. Physical Review Letters, 2019, 124: 178002
|
[28] |
Clark AH, Kondic L, Behringer RP. Steady flow dynamics during granular impact. Physical Review E, 2016, 93(5): 050901 doi: 10.1103/PhysRevE.93.050901
|
[29] |
Bless S, Peden B, Guzman I, et al. Poncelet coefficients of granular media. Dynamic Behavior of Materials, 2014, 1: 373-380
|
[30] |
Cheng B, Yu Y, Hexi B. Collision-based understanding of the force law in granular impact dynamics. Physical Review E, 2018, 98: 012901 doi: 10.1103/PhysRevE.98.012901
|
[31] |
Omidvar M, Iskander M, Bless S. Stress-strain behavior of sand at high strain rates. International Journal of Impact Engineering, 2012, 49: 192-213 doi: 10.1016/j.ijimpeng.2012.03.004
|
[32] |
Katsuragi H, Durian DJ. Drag force scaling for penetration into granular media. Physical Review E, 2013, 87(5): 052208 doi: 10.1103/PhysRevE.87.052208
|
[33] |
Katsuragi H, Durian DJ. Unified force law for granular impact cratering. Nature Physics, 2007, 3: 420-423 doi: 10.1038/nphys583
|
[34] |
Aguilar J, Goldman D. Robophysical study of jumping dynamics on granular media. Nature Physics, 2016, 12: 278-283 doi: 10.1038/nphys3568
|
[35] |
Mindlin RD. Compliance of elastic bodies in contact. ASME Journal of Applied Mechanics, 1949, 16: 259-268 doi: 10.1115/1.4009973
|