EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近壁面圆柱绕流中尾流结构演化特性的实验研究

邱翔 吴昊东 陶亦舟 李家骅 周建康 刘宇陆

邱翔, 吴昊东, 陶亦舟, 李家骅, 周建康, 刘宇陆. 近壁面圆柱绕流中尾流结构演化特性的实验研究. 力学学报, 2022, 54(11): 3042-3057 doi: 10.6052/0459-1879-22-403
引用本文: 邱翔, 吴昊东, 陶亦舟, 李家骅, 周建康, 刘宇陆. 近壁面圆柱绕流中尾流结构演化特性的实验研究. 力学学报, 2022, 54(11): 3042-3057 doi: 10.6052/0459-1879-22-403
Qiu Xiang, Wu Haodong, Tao Yizhou, Li Jiahua, Zhou Jiankang, Liu Yulu. Experimental study on evolution of wake structures in flow past the circular cylinder placed near the wall. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3042-3057 doi: 10.6052/0459-1879-22-403
Citation: Qiu Xiang, Wu Haodong, Tao Yizhou, Li Jiahua, Zhou Jiankang, Liu Yulu. Experimental study on evolution of wake structures in flow past the circular cylinder placed near the wall. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3042-3057 doi: 10.6052/0459-1879-22-403

近壁面圆柱绕流中尾流结构演化特性的实验研究

doi: 10.6052/0459-1879-22-403
基金项目: 国家自然科学基金(12032016, 91952102)和上海市教育委员会“曙光计划”(18SG53)资助项目
详细信息
    作者简介:

    邱翔, 教授, 主要研究方向: 实验流体力学、壁湍流. E-mail: qiux@sit.edu.cn

    陶亦舟, 讲师, 主要研究方向: 湍流数值模拟及实验研究. E-mail: yizhoutao@sit.edu.cn

  • 中图分类号: O357.5

EXPERIMENTAL STUDY ON EVOLUTION OF WAKE STRUCTURES IN FLOW PAST THE CIRCULAR CYLINDER PLACED NEAR THE WALL

  • 摘要: 采用粒子图像测速技术对近壁面圆柱绕流流场进行了实验测量, 重点研究了3种不同间隙比(${G \mathord{\left/ {\vphantom {G D}} \right. } D}{ \;= 0}{.5}$,${G \mathord{\left/ {\vphantom {G D}} \right. } D}{ \;= 1}{.0}$, ${G \mathord{\left/ {\vphantom {G D}} \right. } D}{ \;= 1}{.5}$)时不同雷诺数(${Re} { \;= 1500} \sim {5540}$)下近壁面圆柱绕流尾流结构的演化特性. 实验结果表明: ${G \mathord{\left/ {\vphantom {G D}} \right. } D}{ \;= 0}{.5}$时, 随着雷诺数的增加, 间隙流的偏转减小, 圆柱后方回流区逐渐对称且尺寸减小, 壁面上分离泡的尺寸也逐渐减小, 同时存在雷诺数${{Re} _t}$位于${Re} { \;= 3000} \sim {3200}$之间, 使圆柱尾流和间隙流呈现不同的分布特性, 当雷诺数小于${{Re} _t}$时, 圆柱上游的壁面附近会形成一个小的分离泡, 阻碍了上游流体通过间隙, 使间隙流的强度减小, 导致圆柱尾流和间隙流的偏转. 在${Re} { \;= 1500}$时, 圆柱的涡脱落频率随着间隙比的减小而增大, 当${Re} \geqslant {3000}$时, 随着间隙比减小, 圆柱的涡脱落频率在小范围(${0}{.185} \leqslant St \leqslant {0}{.227}$)内先增大后减小. 雷诺数显著影响近壁面圆柱绕流涡结构的演化, 小间隙比受雷诺数的影响较大, ${G \mathord{\left/ {\vphantom {G D}} \right. } D}{ \;= 0}{.5}$, 在雷诺数${Re} { \;= 1500}$时, 二次涡会偏离壁面向上运动至靠近圆柱上尾涡位置处, 与圆柱上尾涡发生涡合并现象, 雷诺数增大到${Re} { \;= 5540}$时, 二次涡不会和上尾涡合并, 而是直接与下尾涡相互作用; ${G \mathord{\left/ {\vphantom {G D}} \right. } D}{ \;= 1}{.0}$${G \mathord{\left/ {\vphantom {G D}} \right. } D}{ \;= 1}{.5}$时, 随着雷诺数的增大, 二次涡的含能逐渐减小.

     

  • 图  1  实验装置

    Figure  1.  Experimental mode set-up

    图  2  流向速度剖面随着$\eta = y\sqrt {{{{U_\infty }} \mathord{\left/ {\vphantom {{{U_\infty }} {(\nu X)}}} \right. } {(\nu X)}}}$的变化

    Figure  2.  The normalized velocity against normalized distance $\eta = y\sqrt {{{{U_\infty }} \mathord{\left/ {\vphantom {{{U_\infty }} {(\nu X)}}} \right. } {(\nu X)}}}$from plane boundary

    图  3  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {2}{.0}$时平均速度${U \mathord{\left/ {\vphantom {U {{U_\infty }}}} \right. } {{U_\infty }}}$分布

    Figure  3.  The distribution of ${U \mathord{\left/ {\vphantom {U {{U_\infty }}}} \right. } {{U_\infty }}}$ for ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {2}{.0}$

    图  4  时均流向速度${U \mathord{\left/ {\vphantom {U {{U_\infty }}}} \right. } {{U_\infty }}}$分布

    Figure  4.  The distributions of time-averaged streamwise velocity ${U \mathord{\left/ {\vphantom {U {{U_\infty }}}} \right. } {{U_\infty }}}$

    图  5  时均流向速度剖面

    Figure  5.  Profiles of time-averaged streamwise velocity

    5  时均流向速度剖面(续)

    5.  Profiles of time-averaged streamwise velocity (continued)

    图  6  平均展向涡量

    Figure  6.  The contour of mean spanwise vorticity

    图  7  流向脉动速度均方根${{{u_{{\rm{rms}}}}} \mathord{\left/ {\vphantom {{{u_{rms}}} {{U_\infty }}}} \right. } {{U_\infty }}}$分布

    Figure  7.  The distributions of root mean square of the streamwise fluctuation${{{u_{{\rm{rms}}}}} \mathord{\left/ {\vphantom {{{u_{{\rm{rms}}}}} {{U_\infty }}}} \right. } {{U_\infty }}}$

    图  8  流向速度脉动强度剖面

    Figure  8.  Profiles of streamwise velocity fluctuation intensity

    图  9  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {0}{.5}$时流向速度分布

    Figure  9.  The mean streamwise velocity at ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {0}{.5}$

    图  10  时均流向速度${U \mathord{\left/ {\vphantom {U {{U_\infty }}}} \right. } {{U_\infty }}}$分布

    Figure  10.  The distributions of time-averaged streamwise velocity ${U \mathord{\left/ {\vphantom {U {{U_\infty }}}} \right. } {{U_\infty }}}$

    图  11  法向脉动速度$v$的功率谱密度

    Figure  11.  The power spectral density of the vertical fluctuating velocity $v$

    图  12  模态的能量和累积能量

    Figure  12.  Mode energy and cumulative energy

    图  13  前两阶 POD 模态系数分布

    Figure  13.  Correlation map of the first two POD mode coefficients

    图  14  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {0}{.5}$时涡结构演化特性

    Figure  14.  Evolution of the vortex for ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {0}{.5}$

    图  15  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.0}$时涡结构演化特性

    Figure  15.  Evolution of the vortex for ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.0}$

    图  16  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.5}$时涡结构演化特性

    Figure  16.  Evolution of the vortex for ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.5}$

    图  17  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {0}{.5}$前两阶POD模态

    Figure  17.  The first two POD modes at ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {0}{.5}$

    图  18  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.0}$前两阶POD模态

    Figure  18.  The first two POD modes at ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.0}$

    图  19  ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.5}$前两阶POD模态

    Figure  19.  The first two POD modes at ${G \mathord{\left/ {\vphantom {G D}} \right. } D} = {1}{.5}$

  • [1] Chen LF, Wu GX. Boundary shear flow past a cylinder near a wall. Applied Ocean Research, 2019, 92: 101923 doi: 10.1016/j.apor.2019.101923
    [2] Li JH, Xia YX, Qiu X, et al. Vortex statistics of a cylinder wake flow close to the wall based on IB-LBM. Modern Physics Letters B, 2019, 33(29): 1950364 doi: 10.1142/S0217984919503640
    [3] Jiang H, Cheng L. Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900. Physics of Fluids, 2021, 33(3): 034119 doi: 10.1063/5.0041168
    [4] Bearman PW, Zdravkovich MM. Flow around a circular cylinder near a plane boundary. Journal of Fluid Mechanics, 1978, 89(1): 33-47 doi: 10.1017/S002211207800244X
    [5] Lei C, Cheng L, Kavanagh K. Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(3): 263-286 doi: 10.1016/S0167-6105(98)00204-9
    [6] Taneda S. Experimental investigation of vortex streets. Journal of the Physical Society of Japan, 1965, 20(9): 1714-1721 doi: 10.1143/JPSJ.20.1714
    [7] Price SJ, Sumner D, Smith JG, et al. Flow visualization around a circular cylinder near to a plane wall. Journal of Fluids and Structures, 2002, 16(2): 175-191 doi: 10.1006/jfls.2001.0413
    [8] Lin WJ, Lin C, Hsieh SC, et al. Flow characteristics around a circular cylinder placed horizontally above a plane boundary. Journal of Engineering Mechanics, 2009, 135(7): 697-716 doi: 10.1061/(ASCE)0733-9399(2009)135:7(697)
    [9] Khabbouchi I, Guellouz MS, Nasrallah SB. A study of the effect of the jet-like flow on the near wake behind a circular cylinder close to a plane wall. Experimental Thermal and Fluid Science, 2013, 44: 285-300 doi: 10.1016/j.expthermflusci.2012.05.019
    [10] Wang XK, Tan SK. Near-wake flow characteristics of a circular cylinder close to a wall. Journal of Fluids and Structures, 2008, 24(5): 605-627 doi: 10.1016/j.jfluidstructs.2007.11.001
    [11] Wang XK, Tan SK. Comparison of flow patterns in the near wake of a circular cylinder and a square cylinder placed near a plane wall. Ocean Engineering, 2008, 35(5-6): 458-472 doi: 10.1016/j.oceaneng.2008.01.005
    [12] He GS, Wang JJ, Pan C, et al. Vortex dynamics for flow over a circular cylinder in proximity to a wall. Journal of Fluid Mechanics, 2017, 812: 698-720 doi: 10.1017/jfm.2016.812
    [13] Zhou JK, Qiu X, Li JH, et al. The gap ratio effects on vortex evolution behind a circular cylinder placed near a wall. Physics of Fluids, 2021, 33(3): 037112 doi: 10.1063/5.0039611
    [14] Zhang Z, Ji C, Chen W, et al. Influence of boundary layer thickness and gap ratios on three-dimensional flow characteristics around a circular cylinder in proximity to a bottom plane. Ocean Engineering, 2021, 226: 108858 doi: 10.1016/j.oceaneng.2021.108858
    [15] Sarkar S, Sarkar S. Large-eddy simulation of wake and boundary layer interactions behind a circular cylinder. Journal of Fluids Engineering, 2009, 131(9): 091201
    [16] Kyriakides NK, Kastrinakis EG, Nychas SG, et al. Aspects of flow structure during a cylinder wake-induced laminar/turbulent transition. AIAA Journal, 1999, 37(10): 1197-1205 doi: 10.2514/2.613
    [17] Pan C, Wang JJ, Zhang PF, et al. Coherent structures in bypass transition induced by a cylinder wake. Journal of Fluid Mechanics, 2008, 603: 367-389 doi: 10.1017/S0022112008001018
    [18] Mandal AC, Dey J. An experimental study of boundary layer transition induced by a cylinder wake. Journal of Fluid Mechanics, 2011, 684: 60-84 doi: 10.1017/jfm.2011.270
    [19] 唐湛棋, 姜楠. 圆柱尾迹影响旁路转捩末期发卡涡涡包的研究. 力学学报, 2011, 43(6): 1037-1042 (Tang Zhanqi, Jiang Nan. Experimental investigate-on on hairpin vortex packets in the later stage of bypass transition induced by cylinder wake. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1037-1042 (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2011-124
    [20] He GS, Wang JJ, Pan C. Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. Journal of Fluid Mechanics, 2013, 718: 116-130 doi: 10.1017/jfm.2012.599
    [21] He GS, Wang JJ. Flat plate boundary layer transition induced by a controlled near-wall circular cylinder wake. Physics of Fluids, 2015, 27(2): 107-128
    [22] 张孝棣, 蒋甲利, 贾元胜等. 圆柱体绕流尾迹的PIV测量. 实验流体力学, 2005(2): 74-78 (Zhang Xiaodi, Jiang Jiali, Jia Yuansheng, et al. Meas-urements of cylinder's wake by PIV. Journal of Experiments in Fluid Mecha-nics, 2005(2): 74-78 (in Chinese) doi: 10.3969/j.issn.1672-9897.2005.02.015
    [23] Lin JC, Towfighi J, Rockwell D. Instantaneous structure of the near-wake of a circular cylinder: on the effect of Reynolds number. Journal of Fluids and Structures, 1995, 9(4): 409-418 doi: 10.1006/jfls.1995.1023
    [24] Sarwar W, Mellibovsky F. Characterization of three-dimensional vortical structures in the wake past a circular cylinder in the transitional regime. Physics of Fluids, 2020, 32(7): 074104 doi: 10.1063/5.0011311
    [25] Ovchinnikov V, Piomelli U, Choudhari MM. Numerical simulations of boundary-layer transition induced by a cylinder wake. Journal of Fluid Mechanics, 2006, 547: 413 doi: 10.1017/S0022112005007342
    [26] Ouro P, Muhawenimana V, Wilson CAME. Asymmetric wake of a horizontal cylinder in close proximity to a solid boundary for Reynolds numbers in the subcritical turbulence regime. Physical Review Fluids, 2019, 4(10): 104604 doi: 10.1103/PhysRevFluids.4.104604
    [27] 李聪洲, 张新曙, 胡晓峰等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(2): 233-243 (Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al. The study of flow past multiple cylinders at high reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 233-243 (in Chinese) doi: 10.6052/0459-1879-17-346
    [28] 郝乐, 陈龙, 倪明玖. 流向磁场作用下圆柱绕流的直接数值模拟. 力学学报, 2020, 52(6): 1645-1654 (Hao Le, Chen Long, Ni Mingjiu. Direct numerical simulations on the turbulent flow past a confined circular cylinder with the influence of the streamwise magnetic fields. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1645-1654 (in Chinese) doi: 10.6052/0459-1879-20-217
    [29] 邱翔, 陈佳岩, 李家骅等. 雷诺数对近壁面圆柱绕流和壁湍流相互作用结构特性的影响. 水动力学研究与进展 (A辑), 2021, 36(1): 67-76 (Qiu Xiang, Chen Jiayan, Li Jiahua, et al. Experimental study on structural characteristics of the interaction between the flow around a cylinder near the wall and wall turbulence. Chinese Journal of Hydrodynamics A, 2021, 36(1): 67-76 (in Chinese)
    [30] He GS, Pan C, Feng LH, et al. Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. Journal of Fluid Mechanics, 2016, 792: 274-306 doi: 10.1017/jfm.2016.81
    [31] Lumley JL. The structure of inhomogeneous turbulent flows//Atmospheric Turbulence and Radio Wave Propagation, 1967: 166-178
    [32] Sirovich L. Turbulence and the dynamics of coherent structures. I: Coherent structures. Quarterly of Applied Mathematics, 1987, 45(3): 561-571
    [33] Wang HF, Cao HL, Zhou Y. POD analysis of a finite-length cylinder near wake. Experiments in Fluids, 2014, 55(8): 1-15
    [34] Wu Y, Christensen KT. Spatial structure of a turbulent boundary layer with irregular surface roughness. Journal of Fluid Mechanics, 2010, 655: 380-418 doi: 10.1017/S0022112010000960
    [35] Qu Y, Wang JJ, Sun M, et al. Wake vortex evolution of square cylinder with a slot synthetic jet positioned at the rear surface. Journal of Fluid Mechanics, 2017, 812: 940-96 doi: 10.1017/jfm.2016.833
    [36] Lengani D, Simoni D, Ubaldi M, et al. POD analysis of the unsteady behavior of a laminar separation bubble. Experimental Thermal and Fluid Science, 2014, 58: 70-79 doi: 10.1016/j.expthermflusci.2014.06.012
    [37] Van Oudheusden BW, Scarano F, Van Hinsberg NP, et al. Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Experiments in Fluids, 2005, 39(1): 86-98 doi: 10.1007/s00348-005-0985-5
    [38] Li F, He C, Wang P, et al. Unsteady analysis of turbulent flow and heat transfer behind a wall-proximity square rib using dynamic delayed detached-eddy simulation. Physics of Fluids, 2021, 33(5): 055104 doi: 10.1063/5.0051379
    [39] Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 1999, 387: 353-396 doi: 10.1017/S002211209900467X
  • 加载中
图(20)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  53
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 录用日期:  2022-09-27
  • 网络出版日期:  2022-09-28
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回