METHODS AND APPLICATIONS OF PHYSICAL INFORMATION DEEP LEARNING IN WAVE NUMERICAL SIMULATION
-
摘要: 近年来, 物理先验融合数据的深度学习方法求解以偏微分方程为理论基础的正反演问题已成为交叉学科热点. 针对地震工程波动数值模拟, 本文阐明了物理驱动深度学习方法PINN的数学概念及实现方式, 以无源项一维波动为例, 开展了相关理论模型构建, 并与解析解及有限差分方法进行对比, 分析了PINN方法与其他数值算法模拟波场的相对范数误差, 验证了物理驱动深度学习方法求解波动问题的可行性. 采用物理驱动深度学习方法并结合谱元法形成的稀疏初始波场数据, 开展了二维波动数值模拟, 实现了自由边界条件及起伏地表等典型工况的模拟, 并给出了时序波场分布特性. 更换不同的初始条件, 测试了神经网络的泛化精度, 提出可显著提高网络训练效率的迁移学习方法. 通过与谱元法的结果对比, 验证了本文方法模拟均质场地、空间不均匀及复杂地形场地波动问题的可靠性. 结果表明, 物理驱动深度学习方法具备无网格、精细化模拟等优势, 并可实现自由地表及侧边界波场透射等数值模拟条件.Abstract: In recent years, physics-informed deep learning methods based on prior data fusion to solve forward and inverse problems based on partial differential equations (PDEs) have become a cross-disciplinary hotspot. This paper clarifies the mathematical concept and implementation of physics-informed neural networks (PINN) for the earthquake engineering numerical simulation of waves. Taking the one-dimensional fluctuation of passive term as an example, the relevant theoretical model of PINN is constructed. The feasibility of physics-driven deep learning methods in solving fluctuation problems is verified by comparing with analytical solutions and finite difference methods. The relative
$ {\mathcal{L}}_{2} $ norm errors of the wave field simulated by PINN method and other numerical algorithms are analyzed. The physical driven deep learning method combined with sparse initial wave field data formed by spectral element method is used to numerically simulate two-dimensional fluctuation problem. Typical working conditions such as free boundary conditions and undulating ground surface are realized, and the distribution characteristics of time series wave field are given. Different initial conditions are changed to test the generalization accuracy of the neural network, and a transfer learning method was proposed to significantly improve the training efficiency of the network. By using transfer learning, wave fields at different source locations in infinite media can be directly predicted with high accuracy. Comparing with the results of spectral element method, the reliability of the proposed method is verified to simulate the wave propagation of homogeneous site, spatial inhomogeneity and complex terrain site fluctuation. The results show that the physical-driven deep learning method has the advantages of meshless and fine-grained numerical simulation, and can realize the numerical simulation conditions such as free surface and side/bottom boundary wave field transmission. -
表 1 PINN方法在不同领域中的应用
Table 1. Application of PINN method in different fields
领域 应用场景 时间 文献 流体动力学 无需标签数据对流体流动过程进行建模 2020 [15] 多孔介质中的地下水流动问题 2020 [16] 提出一种混合变量格式PINN模拟低雷诺数下的稳态和瞬态层流 2020 [17] 不可压缩Navier-Stokes流 2020 [18] 基于Navier-Stokes方程的流场
重建2021 [19] 热传导 具有内热源的二维稳态导热方程和平板间二维稳态对流传热方程 2021 [20] 热传导方程的正问题及逆问题 2021 [21] 地球物理 通过求解Eikonal方程来预测波在非均匀介质中的传播时间 2020 [22] 求解复杂二维声学介质中的压力响应 2020 [23] 声波传播和全波形反演(FWIs) 2022 [24] 利用亥姆霍兹方程定义损失函数实现波场重建反演(WRI) 2022 [25] 固体力学 识别和表征金属板表面断裂裂纹的问题 2020 [26] 求解矩形薄板力学正反问题 2022 [27] 无需标签数据求解二维平面应力问题与弹性波传播问题 2021 [28] 将动量平衡与本构关系融入到PINN中, 并探讨了在线性弹性力学和非线性问题中的应用 2021 [29] 生物医学 心房颤动诊断问题 2020 [30] -
[1] 胡自多, 刘威, 雍学善等. 三维波动方程时空域混合网格有限差分数值模拟方法. 地球物理学报, 2021, 64(8): 2809-2828 (Hu Ziduo, Liu Wei, Yong Xueshan, et al. Mixed-grid finite-difference method for numerical simulation of 3D wave equation in the time-space domain. Chinese Journal of Geophysics, 2021, 64(8): 2809-2828 (in Chinese) doi: 10.6038/cjg2021O0296 [2] 吴国忱, 李青阳, 吴建鲁等. 流固边界耦合介质高阶有限差分地震正演模拟方法. 地震学报, 2018, 40(1): 32-44 (Wu Guochen, Li Qingyang, Wu Jianlu, et al. High-order finite-difference seismic forward modeling method for fluid-solid boundary coupling media. Acta Seismologica Sinica, 2018, 40(1): 32-44 (in Chinese) doi: 10.11939/jass.20170010 [3] 薛东川, 王尚旭, 焦淑静. 起伏地表复杂介质波动方程有限元数值模拟方法. 地球物理学进展, 2007(2): 522-529 (Xue Dongchuan, Wang Shangxu, Jiao Shujing. Wave equation finite-element modeling including rugged topography and complicated medium. Progress in Geophysics, 2007(2): 522-529 (in Chinese) doi: 10.3969/j.issn.1004-2903.2007.02.026 [4] Liu YS, Teng JW, Lan HQ, et al. A comparative study of finite element and spectral element methods in seismic wavefield modeling. Geophysics, 2014, 79(2): T91-T104 doi: 10.1190/geo2013-0018.1 [5] 李孝波, 薄景山, 齐文浩等. 地震动模拟中的谱元法. 地球物理学进展, 2014, 29(5): 2029-2039 (Li Xiaobo, Bo Jingshan, Qi Wenhao, et al. Spectral element method in seismic ground motion simulation. Progress in Geophysics, 2014, 29(5): 2029-2039 (in Chinese) doi: 10.6038/pg20140506 [6] 刘少林, 杨顶辉, 徐锡伟等. 模拟地震波传播的三维逐元并行谱元法. 地球物理学报, 2021, 64(3): 993-1005 (Liu Shaolin, Yang Dinghui, Xu Xiwei, et al. Three-dimensional element-by-element parallel spectral-element method for seismic wave modeling. Chinese Journal of Geophysics, 2021, 64(3): 993-1005 (in Chinese) [7] 周红, 高孟潭, 俞言祥. SH波地形效应特征的研究. 地球物理学进展, 2010, 25(3): 775-782 (Zhou Hong, Gao Mengtan, Yu Yanxiang. A study of topographical effect on SH waves. Progress in Geophysics, 2010, 25(3): 775-782 (in Chinese) doi: 10.3969/j.issn.1004-2903.2010.03.005 [8] 邢浩洁, 李鸿晶, 李小军. 一维波动有限元模拟中透射边界的时域稳定条件. 应用基础与工程科学学报, 2021, 29(3): 617-632 (Xing Haojie, Li Hongjing, Li Xiaojun. Time-domain stability conditions of multi-transmitting formula in one-dimensional finite-element simulation of wave motion. Journal of Basic Science and Engineering, 2021, 29(3): 617-632 (in Chinese) doi: 10.16058/j.issn.1005-0930.2021.03.008 [9] 邢浩洁, 李小军, 刘爱文等. 波动数值模拟中的外推型人工边界条件. 力学学报, 2021, 53(5): 1480-1495 (Xing Haojie, Li Xiaojun, Liu Aiwen, et al. Extrapolation-type artificial boundary conditions in the numerical simulation of wave motion. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1480-1495 (in Chinese) [10] 章旭斌, 廖振鹏, 谢志南. 透射边界高频耦合失稳机理及稳定实现——SH波动. 地球物理学报, 2015, 58(10): 3639-3648 (Zhang Xubin, Liao Zhenpeng, Xie Zhinan. Mechanism of high frequency coupling instability and stable implementation for transmitting boundary—SH wave motion. Chinese Journal of Geophysics, 2015, 58(10): 3639-3648 (in Chinese) doi: 10.6038/cjg20151017 [11] E WN, Yu B. The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018, 6(1): 1-12 doi: 10.1007/s40304-018-0127-z [12] Sirignano J, Spiliopoulos K. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 2018, 375: 1339-1364 doi: 10.1016/j.jcp.2018.08.029 [13] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019, 378: 686-707 doi: 10.1016/j.jcp.2018.10.045 [14] Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000 doi: 10.1109/72.712178 [15] Sun LN, Gao H, Pan SW, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112732 doi: 10.1016/j.cma.2019.112732 [16] Guo HW, Zhuang XY, Liang D, et al. Stochastic groundwater flow analysis in heterogeneous aquifer with modified neural architecture search (NAS) based physics-informed neural networks using transfer learning. arXiv preprint, arXiv: 2010.12344, 2020 [17] Rao CP, Sun H, Liu Y. Physics-informed deep learning for incompressible laminar flows. Theoretical and Applied Mechanics Letters, 2020, 10(3): 207-212 doi: 10.1016/j.taml.2020.01.039 [18] Jin XW, Cai SZ, Li H, et al. NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics, 2020, 426: 109951 [19] 尧少波, 何伟峰, 陈丽华等. 融合物理的神经网络方法在流场重建中的应用. 空气动力学学报, 2022, 40(5): 30-38Yao Shaobo, He Weifeng, Chen Lihua. Physics informed neural network in flowfield reconstruction. Acta Aerodynamica Sinica, 2022, 40(5): 30-38 (in Chinese)) [20] 陆至彬, 瞿景辉, 刘桦等. 基于物理信息神经网络的传热过程物理场代理模型的构建. 化工学报, 2021, 72(3): 1496-1503 (Lu Zhibin, Qu Jinghui, Liu Hua, et al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network. CIESC Journal, 2021, 72(3): 1496-1503 (in Chinese) doi: 10.11949/0438-1157.20201879 [21] 赵暾, 周宇, 程艳青等. 基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解. 空气动力学学报, 2021, 39(5): 19-26 (Zhao Tun, Zhou Yu, Cheng Yanqing, et al. Solving forward and inverse problems of the heat conduction equation using physics-informed neural networks. Acta Aerodynamica Sinica, 2021, 39(5): 19-26 (in Chinese) doi: 10.7638/kqdlxxb-2020.0176 [22] Smith JD, Azizzadenesheli K, Ross ZE. Eikonet: Solving the eikonal equation with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(12): 10685-10696 [23] Moseley B, Markham A, Nissen-Meyer T. Solving the wave equation with physics-informed deep learning. arXiv preprint, arXiv: 2006.11894, 2020 [24] Rasht-Behesht M, Huber C, Shukla K, et al. Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions. Journal of Geophysical Research:Solid Earth, 2022, 127(5): e2021JB023120 [25] Song C, Alkhalifah TA. wavefield reconstruction inversion via physics-informed neural networks. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12 [26] Shukla K, Di Leoni PC, Blackshire J, et al. Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. Journal of Nondestructive Evaluation, 2020, 39(3): 1-20 [27] 唐明健, 唐和生. 基于物理信息的深度学习求解矩形薄板力学正反问题. 计算力学学报, 2022, 39(1): 120-128 (Tang Mingjian, Tang Hesheng. A physics-informed deep learning method for solving forward and inverse mechanics problems of thin rectangular plates. Chinese Journal of Computational Mechanics, 2022, 39(1): 120-128 (in Chinese) [28] Rao CP, Sun H, Liu Y. Physics-informed deep learning for computational elastodynamics without labeled data. Journal of Engineering Mechanics, 2021, 147(8): 04021043 doi: 10.1061/(ASCE)EM.1943-7889.0001947 [29] Haghighat E, Raissi M, Moure A, et al. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113741 doi: 10.1016/j.cma.2021.113741 [30] Kissas G, Yang YB, Hwuang E, et al. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112623 doi: 10.1016/j.cma.2019.112623 [31] Cuomo S, Di Cola VS, Giampaolo F, et al. Scientific machine learning through physics–informed neural networks: where we are and what’s next. Journal of Scientific Computing, 2022, 92(3): 1-62 [32] 李野, 陈松灿. 基于物理信息的神经网络: 最新进展与展望. 计算机科学, 2022, 49(4): 254-262 (Li Ye, Cheng Songcan. Physics-informed neural networks: recent advances and prospects. Computer Science, 2022, 49(4): 254-262 (in Chinese) [33] Karniadakis GE, Kevrekidis IG, Lu L, et al. Physics-informed machine learning. Nature Reviews Physics, 2021, 3(6): 422-440 doi: 10.1038/s42254-021-00314-5 [34] Cai SZ, Mao ZP, Wang ZC, et al. Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica, 2021, 37(12): 1727-1738 doi: 10.1007/s10409-021-01148-1 [35] Chen TP, Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on Neural Networks, 1995, 6(4): 911-917 doi: 10.1109/72.392253 [36] Sobol’ IM. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4): 86-112 doi: 10.1016/0041-5553(67)90144-9 [37] Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 2003, 154(1): 146-153 doi: 10.1046/j.1365-246X.2003.01950.x [38] 王周, 李朝晖, 龙桂华等. 求解弹性波有限差分法中自由边界处理方法的对比. 工程力学, 2012, 29(4): 77-83 (Wang Zhou, Li Zhaohui, Long Guihua, et al. Comparison among implementations of free-surface boundary in elastic wave simulation using the finite-difference method. Engineering Mechanics, 2012, 29(4): 77-83 (in Chinese) -