EXPERIMENTAL STUDY ON FRICTIONAL PROPERTIES OF FLUID-BEARING SANDSTONE FRACTURES AT DIFFERENT TEMPERATURES
-
摘要: 砂岩储层中由流体注入导致的地震活动与砂岩断层(裂隙)的摩擦行为有关. 为了揭示不同温度条件下含流体砂岩裂隙的摩擦特性, 在温度范围为25 °C ~ 140 °C和有效法向应力范围为4 ~ 12 MPa的试验条件下, 本文分别对干燥、水饱和以及注CO2锯切砂岩裂隙进行了速度分级加载试验. 试验结果表明: (1)对于干燥砂岩裂隙, 增大有效法向应力和升高温度均能增大裂隙的初始摩擦系数, 而改变有效法向应力对裂隙摩擦稳定性影响不明显, 仅升高温度会略微降低其摩擦稳定性; (2)对于水饱和砂岩裂隙, 裂隙的初始摩擦系数同样会随着有效法向应力的增大而增大, 但会受到升温的弱化作用, 而增大有效法向应力和升高温度均能降低裂隙的摩擦稳定性; (3)对于注CO2砂岩裂隙, 裂隙的初始摩擦系数受有效法向应力和温度变化的影响与水饱和砂岩裂隙相反, 但裂隙的摩擦稳定性仅会随着温度的升高而降低, 受有效法向应力的影响不明显. 因此, 砂岩裂隙的摩擦特性受有效法向应力、温度和注入流体类型的共同影响. 该试验结果对理解流体注入诱发地震有一定的指示作用.Abstract: Seismic activity caused by fluid injection in sandstone reservoirs has been associated with the frictional properties of embedded faults or fractures. In order to study the frictional characteristics of fluid-bearing sandstone fractures under different temperature conditions, velocity stepping tests were carried out at varying temperature and pressure conditions (a temperature range of 25 °C ~ 140 °C and an effective normal stress range of 4 ~ 12 MPa) on dry, water saturated and CO2 injected sandstone fractures (obtained by saw cutting), respectively. The experimental results show that: (1) For dry sandstone fractures, increasing effective normal stress and increasing temperature can both increase the initial friction coefficient of fractures, while varying effective normal stress has no obvious effect on the frictional stability of fractures. An increase in temperature is found to enhance the frictional stability of fractures. (2) For sandstone fractures saturated by water, the initial friction coefficients of fractures also increase with the effective normal stresses, but they can be weakened by the rising temperatures, and increasing effective normal stress and temperature can both favor the frictional instability of fractures; (3) For the CO2 injected sandstone fractures, the initial friction coefficients of fractures are affected by the change in effective normal stress and temperature, which is opposite to that of water-saturated sandstone fractures. The frictional stability of fractures is affected by the ambient temperature, seemingly independent of the effective normal stress. To sum up, these experimental results suggest that the frictional characteristics of sandstone fractures are jointly controlled by the effective normal stress, temperature and the injected fluid type. These experimental results may provide a better understanding of earthquakes induced by fluid injection.
-
表 1 速度分级加载试验条件和试验结果
Table 1. Summary of experimental conditions and experimental results of velocity-stepping tests
Number Pc/MPa Pf/MPa T/°C μi a−b VS-1 4 dry 25 0.585 0.0002 VS-2 8 dry 25 0.651 0.00029 VS-3 4 dry 140 0.640 −0.00005 VS-4 8 dry 140 0.668 −0.00037 VS-5 4 water saturated 25 0.647 0.00053 VS-6 8 water saturated 25 0.651 0.00005 VS-7 12 water saturated 25 0.665 −0.00058 VS-8 4 water saturated 80 0.551 0.00091 VS-9 8 water saturated 80 0.629 0.00008 VS-10 4 water saturated 140 0.533 0.00078 VS-11 8 water saturated 140 0.629 −0.00124 VS-12 16 8 MPa CO2 40 0.594 0 VS-13 16 12 MPa CO2 40 0.658 0 VS-14 16 8 MPa CO2 80 0.626 −0.00155 VS-15 16 12 MPa CO2 80 0.666 −0.0018 VS-16 16 8 MPa CO2 140 0.649 −0.00329 VS-17 16 12 MPa CO2 140 0.727 −0.00338 -
[1] Foulger GR, Wilson MP, Gluyas JG, et al. Global review of human-induced earthquakes. Earth-Science Reviews, 2018, 178: 438-514 doi: 10.1016/j.earscirev.2017.07.008 [2] 常廷改, 胡晓. 水库诱发地震研究进展. 水利学报, 2018, 49(9): 1109-1122 (Chang Tinggai, Hu Xiao. Research progress on reservoir induced earthquake. Journal of Hydraulic Engineering, 2018, 49(9): 1109-1122 (in Chinese) doi: 10.13243/j.cnki.slxb.20180654 [3] Buijze L, Van Bijsterveldt L, Cremer H, et al. Review of induced seismicity in geothermal systems worldwide and implications for geothermal systems in the Netherlands. Netherlands Journal of Geosciences, 2019, 98: e13 doi: 10.1017/njg.2019.6 [4] Atkinson GM, Eaton DW, Igonin N. Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 2020, 1(5): 264-277 [5] 柳占立, 庄茁, 孟庆国等. 页岩气高效开采的力学问题与挑战. 力学学报, 2017, 49(3): 507-516 (Liu Zhanli, Zhuang Zuo, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas effcient exploitation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516 (in Chinese) doi: 10.6052/0459-1879-16-399 [6] 魏路路, 姚宴波, 韦正达等. 微地震监测技术在气田水回注中的应用. 石油地球物理勘探, 2018, 53(S2): 168-173 (Wei Lulu, Yao Yanbo, Wei Zhengda, et al. Microseismic monitoring for water reinjection in a gas field. Oil Geophysical Prospecting, 2018, 53(S2): 168-173 (in Chinese) doi: 10.13810/j.cnki.issn.1000-7210.2018.S2.026 [7] Vilarrasa V, Carrera J, Olivella S, et al. Induced seismicity in geologic carbon storage. Solid Earth, 2019, 10(3): 871-892 doi: 10.5194/se-10-871-2019 [8] Mcgarr A, Barbour AJ. Wastewater disposal and the earthquake sequences during 2016 near fairview, pawnee, and cushing, oklahoma. Geophysical Research Letters, 2017, 44(18): 9330-9336 doi: 10.1002/2017GL075258 [9] Goodfellow SD, Nasseri MHB, Maxwell SC, et al. Hydraulic fracture energy budget: Insights from the laboratory. Geophysical Research Letters, 2015, 42(9): 3179-3187 doi: 10.1002/2015GL063093 [10] Passarelli L, Selvadurai PA, Rivalta E, et al. The source scaling and seismic productivity of slow slip transients. Science Advances, 2021, 7(32): eabg9718 doi: 10.1126/sciadv.abg9718 [11] 唐荣江, 朱守彪. 不同摩擦本构关系对断层自发破裂动力学过程的影响. 地球物理学报, 2020, 63(10): 3712-3726 (Tang Rongjiang, Zhu Shoubiao. The effect of different friction laws on dynimic simulations of spontaneous rupture propagation. Chinese Journal of Geophysics, 2020, 63(10): 3712-3726 (in Chinese) doi: 10.6038/cjg2020O0031 [12] Ida Y. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. Journal of Geophysical Research (1896-1977), 1972, 77(20): 3796-3805 [13] Beeler NM, Tullis TE, Goldsby DL. Constitutive relationships and physical basis of fault strength due to flash heating. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01401 [14] Dieterich JH. Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics, 1978, 116(4): 790-806 [15] Ruina A. Slip instability and state variable friction laws. Journal of Geophysical Research, 1983, 88(B12): 10359-10370 doi: 10.1029/JB088iB12p10359 [16] Cappa F, Scuderi MM, Collettini C, et al. Stabilization of fault slip by fluid injection in the laboratory and in situ. Science Advances, 2019, 5(3): eaau4065 doi: 10.1126/sciadv.aau4065 [17] Den Hartog S aM, Thomas MY, Faulkner DR. How do laboratory friction parameters compare with observed fault slip and geodetically derived friction parameters? insights from the longitudinal valley fault. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2021JB022390 [18] Fang Y, Elsworth D, Wang C, et al. Frictional stability-permeability relationships for fractures in shales. Journal of Geophysical Research: Solid Earth, 2017, 122(3): 1760-1776 doi: 10.1002/2016JB013435 [19] Fang Y, Elsworth D, Ishibashi T, et al. Permeability evolution and frictional stability of fabricated fractures with specified roughness. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9355-9375 doi: 10.1029/2018JB016215 [20] Fang Y, Elsworth D, Wang C, et al. Mineralogical controls on frictional strength, stability, and shear permeability evolution of fractures. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3549-3563 doi: 10.1029/2017JB015338 [21] Harbord CWA, Nielsen SB, De Paola N, et al. Earthquake nucleation on rough faults. Geology, 2017, 45(10): 931-934 doi: 10.1130/G39181.1 [22] Cornelio C, Violay M. Effect of fluid viscosity on earthquake nucleation. Geophysical Research Letters, 2020, 47(12): e2020GL087854 [23] 李小春, 刘延锋, 白冰等. 中国深部咸水含水层CO2储存优先区域选择. 岩石力学与工程学报, 2006, 5: 963-968 (Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China. Chinese Journal of Rock Mechanisc and Engineering, 2006, 5: 963-968 (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.05.015 [24] Samuelson J, Spiers CJ. Fault friction and slip stability not affected by CO2 storage: Evidence from short-term laboratory experiments on North Sea reservoir sandstones and caprocks. International Journal of Greenhouse Gas Control, 2012, 11: S78-S90 doi: 10.1016/j.ijggc.2012.09.018 [25] Shen N, Li X, Zhang Q, et al. Comparison of shear-induced gas transmissivity of tensile fractures in sandstone and shale under varying effective normal stresses. Journal of Natural Gas Science and Engineering, 2021, 95: 104218 doi: 10.1016/j.jngse.2021.104218 [26] Barton N. Review of a new shear-strength criterion for rock joints. Engineering Geology, 1973, 7(4): 287-332 doi: 10.1016/0013-7952(73)90013-6 [27] Dieterich JH. Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 1979, 84(B5): 2161-2168 doi: 10.1029/JB084iB05p02161 [28] Bhattacharya P, Rubin AM, Bayart E, et al. Critical evaluation of state evolution laws in rate and state friction: Fitting large velocity steps in simulated fault gouge with time-, slip-, and stress-dependent constitutive laws. Journal of Geophysical Research:Solid Earth, 2015, 120(9): 6365-6385 doi: 10.1002/2015JB012437 [29] Zhang Q, Li X, Bai B, et al. Development of a direct-shear apparatus coupling with high pore pressure and elevated temperatures. Rock Mechanics and Rock Engineering, 2019, 52(9): 3475-3484 doi: 10.1007/s00603-019-1735-y [30] Shen N, Wang L, Li X. Laboratory simulation of injection-induced shear slip on saw-cut sandstone fractures under different boundary conditions. Rock Mechanics and Rock Engineering, 2021, 55(2): 751-771 [31] Ikari MJ, Saffer DM, Marone C. Frictional and hydrologic properties of clay-rich fault gouge. Journal of Geophysical Research-Solid Earth, 2009, 114(B5): B05409 [32] Morad D, Sagy A, Tal Y, et al. Fault roughness controls sliding instability. Earth and Planetary Science Letters, 2022, 579: 117365 doi: 10.1016/j.jpgl.2022.117365 [33] 刘玉春, 荆刚, 赵扬锋等. 加载速率与断层倾角对断层矿震失稳影响的试验研究. 岩土力学, 2022, 43(S1): 35-45 (Liu Yuchun, Jing Gang, Zhao Yangfeng, et al. Experimental study on fault rockbrust instability by loading rate and fault slip. Rock and Soil Mechanics, 2022, 43(S1): 35-45 (in Chinese) doi: 10.16285/j.rsm.2021.0179 [34] Skarbek RM, Savage HM. RSFit3000: A MATLAB GUI-based program for determining rate and state frictional parameters from experimental data. Geosphere, 2019, 15(5): 1665-1676 doi: 10.1130/GES02122.1 [35] Kilgore BD, Blanpied ML, Dieterich JH. Velocity dependent friction of granite over a wide range of conditions. Geophysical Research Letters, 1993, 20(10): 903-906 doi: 10.1029/93GL00368 [36] Shen H, Zhang Q, Li Q, et al. Experimental and numerical investigations of the dynamic permeability evolution of a fracture in granite during shearing under different normal stress conditions. Rock Mechanics and Rock Engineering, 2020, 53(10): 4429-4447 doi: 10.1007/s00603-020-02074-7 [37] Bedford JD, Faulkner DR. The role of grain size and effective normal stress on localization and the frictional stability of simulated quartz gouge. Geophysical Research Letters, 2021, 48(7): e2020GL092023 [38] Marone C, Scholz CH. The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophysical Research Letters, 1988, 15(6): 621-624 doi: 10.1029/GL015i006p00621 [39] Reches ZE, Lockner DA. Fault weakening and earthquake instability by powder lubrication. Nature, 2010, 467(7314): 452-455 doi: 10.1038/nature09348 [40] Den Hartog S, Niemeijer AR, Spiers CJ. New constraints on megathrust slip stability under subduction zone P–T conditions. Earth and Planetary Science Letters, 2012, 353-354: 240-252 doi: 10.1016/j.jpgl.2012.08.022 [41] Brace WF, Byerlee JD. California earthquakes: why only shallow focus? Science, 1970, 168(3939): 1573-1575 doi: 10.1126/science.168.3939.1573 [42] Passelègue FX, Aubry J, Nicolas A, et al. From fault creep to slow and fast earthquakes in carbonates. Geology, 2019, 47(8): 744-748 doi: 10.1130/G45868.1 [43] Mitchell EK, Fialko Y, Brown KM. Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochemistry, Geophysics, Geosystems, 2015, 16(11): 4006-4020 doi: 10.1002/2015GC006093 [44] Blanpied ML, Lockner DA, Byerlee JD. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophysical Research Letters, 1991, 18(4): 609-612 doi: 10.1029/91GL00469 [45] Verberne BA, Spiers CJ, Niemeijer AR, et al. Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure and Applied Geophysics, 2014, 171(10): 2617-2640 doi: 10.1007/s00024-013-0760-0 [46] Gratier JP, Dysthe DK, Renard F. The Role of Pressure Solution Creep in the Ductility of the Earth’s Upper Crust//Dmowska R, editor. Advances in Geophysics. Elsevier, 2013: 47-179 [47] Pluymakers AMH, Samuelson JE, Niemeijer AR, et al. Effects of temperature and CO2 on the frictional behavior of simulated anhydrite fault rock. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 8728-8747 doi: 10.1002/2014JB011575 [48] Isaka BLA, Ranjith PG, Rathnaweera TD, et al. Testing the frackability of granite using supercritical carbon dioxide: Insights into geothermal energy systems. Journal of CO 2 Utilization, 2019, 34: 180-197 doi: 10.1016/j.jcou.2019.06.009 [49] 徐永福. 膨胀土的水力作用机理及膨胀变形理论. 岩土工程学报, 2020, 42(11): 1979-1987 (Xu Yongfu. Hydraulic mechanism and swelling deformation theory of expansive soils. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979-1987 (in Chinese) [50] Scuderi MM, Collettini C. Fluid injection and the mechanics of frictional stability of shale-bearing faults. Journal of Geophysical Research:Solid Earth, 2018, 123(10): 8364-8384 doi: 10.1029/2018JB016084 [51] 宋朝阳, 纪洪广, 刘志强等. 饱和水弱胶结砂岩剪切断裂面形貌特征及破坏机理. 煤炭学报, 2018, 43(9): 2444-2451 (Song Zhaoyang, Ji Hongguang, Liu Zhiqiang, et al. Morphology and failure mechanism of the shear fracture surface of weakly cemented sandstone with water saturation. Journal of China Coal Society, 2018, 43(9): 2444-2451 (in Chinese) doi: 10.13225/j.cnki.jccs.2017.1767 -