A SCALE-INVARIANT HIGH-ORDER WCNS SCHEME
-
摘要: 高速流场的数值模拟中, 既要保证对小尺度结构的高保真分辨, 又要实现对激波稳定、无振荡地捕捉.当前工程中广泛应用的高精度数值格式虽然都能一定程度地满足上述两种要求, 但仍与理想目标存在较大差距.例如, 模拟雷诺应力模型等小尺度问题时, 高精度格式在间断解附近易产生数值振荡.基于高精度格式所存在的上述问题, 本文引入去尺度函数, 探索了一种更加简单稳定的非线性权重构造方法, 并将其应用于7阶精度加权紧致非线性格式WCNS, 提出了一种尺度无关的7阶WCNS格式.该格式的性能与灵敏度参数和尺度因子的选择无关, 并且在小尺度下仍可以有效捕捉流场激波.同时, 该格式在间断处具有基本无振荡性质, 且在任意尺度函数下保持尺度无关, 并且在极值点处也能保持最优精度.本文还推导了7阶D权函数的形式.最后, 在一维线性对流方程中验证了新格式在流场光滑区能够达到设计精度, 并通过一系列数值实验证明了尺度无关的7阶WCNS格式在激波捕捉能力上具有良好表现, 为WCNS格式改进和解决可压缩湍流等非线性问题提供了一种新途径.Abstract: For numerical simulation of high-speed flows, it requires that small-scale structures are resolved with high-fidelity, and discontinuities are stably captured without spurious oscillation. These two aspects put forward almost contradictory requirements for numerical schemes. The widely used high-order schemes can satisfy the two demands required above to some extent. However, they all have advantages and disadvantages compared to each other and no one can be considered perfect. For example, high-order schemes are prone to generating numerical oscillations near discontinuities when a small-scale problem is discretized, such as the Reynolds-stress model. To solve this deficiency, a simple, effective and robust modification is introduced to the seventh-order weight compact nonlinear scheme (WCNS) by making use of the descaling function to formulate a scale-invariant WCNS scheme. The descaling function is devised using an average of the function values and introduced into the nonlinear weights of the WCNS7-JS/Z/D schemes to eliminate the scale dependency. The design idea of the scale-invariant WCNS scheme is to make weights independent of the scale factor and the sensitivity parameter. In addition, the shock-capturing ability of the new scheme performs well even for small-scale problems. The new schemes can achieve an essentially non-oscillatory approximation of a discontinuous function (ENO-property), a scale-invariant property with an arbitrary scale of a function (Si-property), and an optimal order of accuracy with smooth function regardless of the critical point (Cp-property). We derive the seventh-order D-type weights. The one-dimensional linear advection equation is solved to verify that WCNS schemes can achieve the optimal (seventh) order of accuracy. We test a series of one- and two-dimensional numerical experiments governed by Euler equations to demonstrate that the scale-invariant WCNS schemes perform well in the shock-capturing ability. Overall, the scale-invariant WCNS schemes provide a new method for improving WCNS schemes and solving nonlinear problems.
-
Key words:
- WCNS scheme /
- descaling function /
- scale-invariant /
- shock-capturing
-
图 4 3套网格单元数
$N$ 下使用WCNS格式计算Sine函数$ {f_1}(x) $ 的Si误差${E_{Si}}(\lambda )$ ,$\lambda \in [1.0 \times{\text{1}}{{\text{0}}^{-19}},1.0 \times {\text{1}}{{\text{0}}^{19}}]$ ,$\varepsilon = 1.0 \times {10^{ - 6}}$ (上行)和$\varepsilon =1.0 \times {10^{ - 40}}$ (下行)Figure 4. The Si-error
${E_{Si}}(\lambda )$ of the Sine function$ {f_1}(x) $ calculated by the WCNS schemes with$\varepsilon = 1.0 \times {10^{ - 6}}$ (top row),$\varepsilon = 1.0 \times {10^{ - 40}}$ (bottom row), and different scale factors$\lambda \in [1.0 \times{\text{1}}{{\text{0}}^{ - 19}},1.0 \times {\text{1}}{{\text{0}}^{19}}]$ for three number of cells$N$ 图 5 3套网格单元数
$N$ 下使用WCNS格式计算$ {\text{ReLU}} $ 函数$ {f_2}(x) $ 的Si误差${E_{Si}}(\lambda )$ ,$\lambda \in [1.0 \times{\text{1}}{{\text{0}}^{-19}},1.0 \times{\text{1}}{{\text{0}}^{19}}]$ ,$\varepsilon = 1.0 \times{10^{ - 6}}$ (上行)和$\varepsilon = 1.0 \times{10^{ - 40}}$ (下行)Figure 5. The Si-error
${E_{Si}}(\lambda )$ of the$ {\text{ReLU}} $ function$ {f_2}(x) $ calculated by the WCNS schemes with$\varepsilon = 1.0 \times{10^{ - 6}}$ (top row),$\varepsilon =1.0 \times {10^{ - 40}}$ (bottom row), and different scale factors$\lambda \in [1.0 \times{\text{1}}{{\text{0}}^{-19}},1.0 \times{\text{1}}{{\text{0}}^{19}}]$ for three number of cells$N$ 图 6 3套网格单元数
$N$ 下使用WCNS格式计算Heaviside函数$ {f_3}(x) $ 的Si误差${E_{Si}}(\lambda )$ ,$\lambda \in [1.0 \times{\text{1}}{{\text{0}}^{ - 19}},1.0 \times{\text{1}}{{\text{0}}^{19}}]$ ,$\varepsilon = 1.0 \times{10^{ - 6}}$ (上行)和$\varepsilon = 1.0 \times{10^{ - 40}}$ (下行)Figure 6. The Si-error
${E_{Si}}(\lambda )$ of the Heaviside function$ {f_3}(x) $ calculated by the WCNS schemes with$\varepsilon = 1.0 \times{10^{ - 6}}$ (top row),$\varepsilon = 1.0 \times{10^{ - 40}}$ (bottom row), and different scale factors$\lambda \in [1.0 \times{\text{1}}{{\text{0}}^{ - 19}},1.0 \times{\text{1}}{{\text{0}}^{19}}]$ for three number of cells$N$ 图 7 在极值点
${n_{cp}} = n = 1,2,3,4$ 下WCNS格式的收敛精度和${L_\infty }$ 误差, 且$\lambda = 1$ ,$\varepsilon = 1.0 \times {10^{ - 6}}$ (上行),$\varepsilon = 1.0 \times {10^{ - 40}}$ (下行)Figure 7.
${L_\infty }$ error of the WCNS schemes with$\varepsilon = 1.0 \times {10^{ - 6}}$ (top row),$\varepsilon = 1.0 \times {10^{ - 40}}$ (bottom row), and the scale factor$\lambda = 1$ for${n_{cp}} = n = 1,2,3,4$ 图 8
$\varepsilon = 1.0 \times {10^{ - 6}}$ 和$\varepsilon = 1.0 \times {10^{ - 40}}$ 时分别使用WCNS格式计算$\lambda = 1.0 \times {10^{ - 7}},1,{100}$ 下的Lax问题Figure 8. Density of the Lax problem computed by the WCNS schemes with
$\varepsilon = 1.0 \times {10^{ - 6}}$ and$\varepsilon =1.0 \times {10^{ - 40}}$ for$\lambda = 1.0 \times {10^{ - 7}},1,{100}$ 图 14
$\varepsilon = 1.0 \times {10^{ - 40}}$ 时使用WCNS7-D/Dm格式计算$\lambda = 1.0 \times {10^{ - 7}}$ 下的二维 Riemann 问题中的构型6Figure 14. Density of the configuration 6 of 2-D Riemann problems computed by the WCNS7-D/Dm schemes with
$\lambda = 1.0 \times {10^{ - 7}}$ and$\varepsilon = 1.0 \times {10^{ - 40}}$ 14
$\varepsilon = 1.0 \times {10^{ - 40}}$ 时使用WCNS7-D/Dm格式计算$\lambda = 1.0 \times {10^{ - 7}}$ 下的二维 Riemann 问题中的构型6 (续)14. Density of the configuration 6 of 2-D Riemann problems computed by the WCNS7-D/Dm schemes with
$\lambda =1.0 \times {10^{ - 7}}$ and$\varepsilon = 1.0 \times {10^{ - 40}}$ (continued)表 1 WCNS格式在
$\varepsilon = 1.0 \times 1{{\text{0}}^{ - 40}}$ ,${n_{cp}} = 3$ 时的${L_\infty }$ 误差${E_N}$ 和收敛阶$O(\Delta {x^s})$ Table 1.
${L_\infty }$ error${E_N}$ , and order of accuracy$O(\Delta {x^s})$ of WCNS schemes with$\varepsilon = 1.0 \times 1{{\text{0}}^{ - 40}}$ and${n_{cp}} = 3$ $\lambda $ $N$ WCNS7-JSm WCNS7-Zm WCNS7-D WCNS7-Dm ${E_N}$ $s$ ${E_N}$ $s$ ${E_N}$ $s$ ${E_N}$ $s$ $1.0 \times {10^{ - 7}}$ $ 80 $ $2.51 \times {10^{ - 12}}$ — $ 2.28 \times {10^{ - 12}} $ — $ 2.84 \times {10^{ - 18}} $ — $ 1.70 \times {10^{ - 15}} $ — $ 160 $ $ 3.09 \times {10^{ - 13}} $ $ 3.02 $ $ 2.74 \times {10^{ - 13}} $ $ 3.05 $ $ 2.24 \times {10^{ - 20}} $ $ 6.99 $ $ 2.00 \times {10^{ - 17}} $ $ 6.41 $ $ 320 $ $ 3.83 \times {10^{ - 14}} $ $ 3.01 $ $ 3.38 \times {10^{ - 14}} $ $ 3.02 $ $ 1.75 \times {10^{ - 22}} $ $ 6.99 $ $ 1.83 \times {10^{ - 19}} $ $ 6.77 $ $ 640 $ $ 4.76 \times {10^{ - 15}} $ $ 3.01 $ $ 4.19 \times {10^{ - 15}} $ $ 3.01 $ $ 1.37 \times {10^{ - 24}} $ $ 7.00 $ $ 1.52 \times {10^{ - 21}} $ $ 6.91 $ $ 1280 $ $ 5.93 \times {10^{ - 16}} $ $ 3.00 $ $ 5.21 \times {10^{ - 16}} $ $ 3.01 $ $ 1.07 \times {10^{ - 26}} $ $ 7.00 $ $ 1.21 \times {10^{ - 23}} $ $ 6.97 $ $ 2560 $ $ 7.40 \times {10^{ - 17}} $ $ 3.00 $ $ 6.50 \times {10^{ - 17}} $ $ 3.00 $ $ 8.39 \times {10^{ - 29}} $ $ 7.00 $ $ 9.57 \times {10^{ - 26}} $ $ 6.99 $ $ 5120 $ $ 9.24 \times {10^{ - 18}} $ $ 3.00 $ $ 8.12 \times {10^{ - 18}} $ $ 3.00 $ $ 6.56 \times {10^{ - 31}} $ — $ 7.51 \times {10^{ - 28}} $ $ 6.99 $ $10\;240$ $ 1.15 \times {10^{ - 18}} $ $ 3.00 $ $ 1.01 \times {10^{ - 18}} $ $ 3.00 $ $ 5.13 \times {10^{ - 33}} $ $ 7.00 $ $ 5.88 \times {10^{ - 30}} $ $ 7.00 $ ${100}$ $ 80 $ $ 2.51 \times {10^{ - 3}} $ — $ 2.28 \times {10^{ - 3}} $ — $ 7.54 \times {10^{ - 5}} $ — $ 1.70 \times {10^{ - 6}} $ — $ 160 $ $ 3.09 \times {10^{ - 4}} $ $ 3.02 $ $ 2.74 \times {10^{ - 4}} $ $ 3.05 $ $ 7.15 \times {10^{ - 7}} $ $ 6.72 $ $ 2.00 \times {10^{ - 8}} $ $ 6.41 $ $ 320 $ $ 3.83 \times {10^{ - 5}} $ $ 3.01 $ $ 3.38 \times {10^{ - 5}} $ $ 3.02 $ $ 5.42 \times {10^{ - 9}} $ $ 7.04 $ $ 1.83 \times {10^{ - 10}} $ $ 6.77 $ $ 640 $ $ 4.76 \times {10^{ - 6}} $ $ 3.01 $ $ 4.19 \times {10^{ - 6}} $ $ 3.01 $ $ 4.06 \times {10^{ - 11}} $ $ 7.06 $ $ 1.52 \times {10^{ - 12}} $ $ 6.91 $ $ 1280 $ $ 5.93 \times {10^{ - 7}} $ $ 3.00 $ $ 5.21 \times {10^{ - 7}} $ $ 3.01 $ $ 3.09 \times {10^{ - 13}} $ $ 7.04 $ $ 1.21 \times {10^{ - 14}} $ $ 6.97 $ $ 2560 $ $ 7.40 \times {10^{ - 8}} $ $ 3.00 $ $ 6.50 \times {10^{ - 8}} $ $ 3.00 $ $ 2.37 \times {10^{ - 15}} $ $ 7.02 $ $ 9.57 \times {10^{ - 17}} $ $ 6.99 $ $ 5120 $ $ 9.24 \times {10^{ - 9}} $ $ 3.00 $ $ 8.12 \times {10^{ - 9}} $ $ 3.00 $ $ 1.84 \times {10^{ - 17}} $ $ 7.01 $ $ 7.51 \times {10^{ - 19}} $ $ 6.99 $ $10\;240$ $ 1.15 \times {10^{ - 9}} $ $ 3.00 $ $ 1.01 \times {10^{ - 9}} $ $ 3.00 $ $ 1.43 \times {10^{ - 19}} $ $ 7.01 $ $ 5.88 \times {10^{ - 21}} $ $ 7.00 $ 表 2 WCNS7-D/Dm格式的误差值和收敛阶 (
$\varepsilon $ = 1.0 × 10−40)Table 2. Error and accuracy statistics for WCNS7-D/Dm schemes (
$\varepsilon $ = 1.0 × 10−40)$\lambda $ $N$ WCNS7-D WCNS7-Dm ${L_1}$error order ${L_\infty }$error order ${L_1}$error order ${L_\infty }$error order $1.0 \times {10^{ - 7}}$ $ 5.73 \times {10^{ - 9}} $ — $ 3.25 \times {10^{ - 8}} $ — $ 5.89 \times {10^{ - 9}} $ — $ 5.04 \times {10^{ - 8}} $ — $ 40 $ $ 1.27 \times {10^{ - 9}} $ $ 2.17 $ $ 7.92 \times {10^{ - 9}} $ $ 2.04 $ $ 1.09 \times {10^{ - 9}} $ $ 2.43 $ $ 1.10 \times {10^{ - 8}} $ $ 2.19 $ $ 80 $ $ 4.12 \times {10^{ - 11}} $ $ 4.95 $ $ 3.70 \times {10^{ - 10}} $ $ 4.42 $ $ 4.17 \times {10^{ - 11}} $ $ 4.71 $ $ 3.72 \times {10^{ - 10}} $ $ 4.89 $ $ 160 $ $ 3.97 \times {10^{ - 13}} $ $ 6.70 $ $ 4.17 \times {10^{ - 12}} $ $ 6.47 $ $ 3.97 \times {10^{ - 13}} $ $ 6.71 $ $ 4.17 \times {10^{ - 12}} $ $ 6.48 $ $ 320 $ $ 3.26 \times {10^{ - 15}} $ $ 6.93 $ $ 3.47 \times {10^{ - 14}} $ $ 6.91 $ $ 3.26 \times {10^{ - 15}} $ $ 6.93 $ $ 3.47\times {10^{ - 14}} $ $ 6.93 $ $ 640 $ $ 2.62 \times {10^{ - 17}} $ $ 6.96 $ $ 2.85 \times {10^{ - 16}} $ $ 6.93 $ $ 2.62 \times {10^{ - 17}} $ $ 6.96 $ $ 2.85 \times {10^{ - 16}} $ $ 6.93 $ 1 $ 20 $ $ 5.51 \times {10^{ - 2}} $ — $ 4.85 \times {10^{ - 1}} $ — $ 5.89 \times {10^{ - 2}} $ — $ 5.04 \times {10^{ - 1}} $ — $ 40 $ $ 8.75 \times {10^{ - 3}} $ $ 2.65 $ $ 9.15 \times {10^{ - 2}} $ $ 2.40 $ $ 1.09 \times {10^{ - 2}} $ $ 2.43 $ $ 1.10 \times {10^{ - 1}} $ $ 2.19 $ $ 80 $ $ 4.07 \times {10^{ - 4}} $ $ 4.43 $ $ 3.70 \times {10^{ - 3}} $ $ 4.63 $ $ 4.16 \times {10^{ - 4}} $ $ 4.17 $ $ 3.72 \times {10^{ - 3}} $ $ 4.89 $ $ 160 $ $ 3.97 \times {10^{ - 6}} $ $ 6.68 $ $ 4.17 \times {10^{ - 5}} $ $ 6.47 $ $ 3.97 \times {10^{ - 6}} $ $ 6.71 $ $ 4.17 \times {10^{ - 5}} $ $ 6.48 $ $ 320 $ $ 3.26 \times {10^{ - 8}} $ $ 6.93 $ $ 3.47 \times {10^{ - 7}} $ $ 6.91 $ $ 3.26 \times {10^{ - 8}} $ $ 6.93 $ $ 3.47 \times {10^{ - 7}} $ $ 6.91 $ $ 640 $ $ 2.62 \times {10^{ - 10}} $ $ 6.96 $ $ 2.85 \times {10^{ - 9}} $ $ 6.93 $ $ 2.62 \times {10^{ - 10}} $ $ 6.96 $ $ 2.85 \times {10^{ - 9}} $ $ 6.93 $ ${10^2}$ $ 20 $ $ 5.89 \times {10^0} $ — $ 5.04 \times {10^{ - 1}} $ — $ 5.89 \times {10^0} $ — $ 5.04 \times {10^{ - 1}} $ — $ 40 $ $ 1.10 \times {10^0} $ $ 2.42 $ $ 1.11 \times {10^{ - 1}} $ $ 2.18 $ $ 1.09 \times {10^0} $ $ 2.43 $ $ 1.10 \times {10^{ - 1}} $ $ 2.19 $ $ 80 $ $ 4.43 \times {10^{ - 2}} $ $4.63$ $ 3.71 \times {10^{ - 1}} $ $ 4.90 $ $ 4.16 \times {10^{ - 2}} $ $ 4.71 $ $ 3.72 \times {10^{ - 1}} $ $ 4.89 $ $ 160 $ $ 3.97 \times {10^{ - 4}} $ $ 6.80 $ $ 4.17 \times {10^{ - 3}} $ $ 6.47 $ $ 3.97 \times {10^{ - 4}} $ $ 6.71 $ $ 4.17 \times {10^{ - 3}} $ $ 6.48 $ $ 320 $ $ 3.26 \times {10^{ - 6}} $ $ 6.93 $ $ 3.47 \times {10^{ - 5}} $ $ 6.91 $ $ 3.26 \times {10^{ - 6}} $ $ 6.93 $ $ 3.47 \times {10^{ - 5}} $ $ 6.91 $ $ 640 $ $ 2.62 \times {10^{ - 8}} $ $ 6.96 $ $ 2.85 \times {10^{ - 7}} $ $ 6.93 $ $ 2.62 \times {10^{ - 8}} $ $ 6.96 $ $ 2.85 \times {10^{ - 7}} $ $ 6.93 $ -
[1] 王年华, 常兴华, 马戎等. HyperFLOW软件非结构网格亚跨声速湍流模拟的验证与确认. 力学学报, 2019, 51(3): 813-825 (Wang Nianhua, Chang Xinghua, Ma Rong, et al. Verification and validation of hyperflow solver for subsonic and transonic turbulent flow simulations on unstructured/hybrid grids. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 813-825 (in Chinese) doi: 10.6052/0459-1879-18-331 [2] Zhang HB, Xu CG, Dong HB. An extended seventh-order compact nonlinear scheme with positivity-preserving property. Computers and Fluids, 2021, 229: 105085 [3] Dong YD, Deng XG, Dan X, et al. Reevaluation of High-order Finite Difference and Finite Volume Algorithms with Freestream Preservation Satisfied. Computers and Fluids, 2017, 156: 343-352 [4] Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, 103(1): 16-42 doi: 10.1016/0021-9991(92)90324-R [5] Johnsen E, Larsson J, Bhagatwala AV, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. Journal of Computational Physics, 2010, 229(4): 1213-1237 doi: 10.1016/j.jcp.2009.10.028 [6] Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 1983, 49(3): 357-393 doi: 10.1016/0021-9991(83)90136-5 [7] Billet G, Louedin O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows. Journal of Computational Physics, 2001, 170(1): 161-183 doi: 10.1006/jcph.2001.6731 [8] Yee HC, Klopfer GH, Montagné JL. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows. Journal of Computational Physics, 1990, 88(1): 31-61 doi: 10.1016/0021-9991(90)90241-R [9] Wang ZJ, Fidkowski K, Abgrall R, et al. High-order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811-845 doi: 10.1002/fld.3767 [10] Tian ZZ, Wang GX, Zhang F, et al. A third-order compact nonlinear scheme for compressible flow simulations. International Journal for Numerical Methods in Fluids, 2020, 92(10): 1352-1367 doi: 10.1002/fld.4831 [11] Harten A, Osher S. Uniformly high-order accurate nonoscillatory schemes. I. Siam Journal on Numerical Analysis, 1987, 24(2): 279-309 doi: 10.1137/0724022 [12] Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 1987, 71(1): 231-303 [13] Liu X, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115(1): 200-212 doi: 10.1006/jcph.1994.1187 [14] 李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究. 力学学报, 2012, (4): 673-686 (Li Hu, Zhang Shuhai. Direct numerical simulation of decaying compressible isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 1994, 115(1): 200-212 (in Chinese)) [15] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017, 49(1): 93-104 (Tong Fulin, Li Xinliangy, Tang Zhigong. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese) doi: 10.6052/0459-1879-16-224 [16] 韦志龙, 蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报, 2021, 53(4): 973-985 (Wei Zhilong, Jiang Qin. Numerical study on water-air two-phase flow based on WENO-THINC/WLIC model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 973-985 (in Chinese) [17] Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126(1): 202-228 doi: 10.1006/jcph.1996.0130 [18] Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005, 207(2): 542-567 doi: 10.1016/j.jcp.2005.01.023 [19] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227(6): 3191-3211 doi: 10.1016/j.jcp.2007.11.038 [20] Qiu JX, Shu CW. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. Journal of Computational Physics, 2002, 183(1): 187-209 doi: 10.1006/jcph.2002.7191 [21] 骆信, 吴颂平. 改进的五阶WENO-Z+ 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese) [22] Li JY, Shu CW, Qiu JX. Multi-resolution HWENO schemes for hyperbolic conservation laws. Journal of Computational Physics, 2021, 446: 110653 [23] Deng XG, Mao ML. Weighted compact high-order nonlinear schemes for the Euler equations//13th Computational Fluid Dynamics Conference, 1997 [24] Deng XG, Zhang HX. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2000, 165(1): 22-44 doi: 10.1006/jcph.2000.6594 [25] Deng XG, Maekawa H. Compact high-order accurate nonlinear schemes. Journal of Computational Physics, 1997, 130(1): 77-91 doi: 10.1006/jcph.1996.5553 [26] 赵云飞, 刘伟, 冈敦殿等. 粗糙物面引起的超声速边界层转捩现象研究. 宇航学报, 2015, 36(6): 739-746 (Zhao Yunfei, Liu Wei, Gang Dundian, et al. Study of surface roughness induced supersonic boundary layer transition. Journal of Astronautics, 2015, 36(6): 739-746 (in Chinese) [27] 王光学, 王圣业, 葛明明等. 基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟. 物理学报, 2018, 67(19): 11 (Wang Guangxue, Wang Shengye, Ge Mingming, et al. High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy. Chinese Journal of Physics, 2018, 67(19): 11 (in Chinese) doi: 10.7498/aps.67.20172677 [28] Man LW, Angel JB, Barad MF, et al. A positivity-preserving high-order weighted compact nonlinear scheme for compressible gas-liquid flows. Journal of Computational Physics, 2021, 444: 110569 [29] 赵云飞, 刘伟, 刘绪等. 非定常运动下的激波/边界层干扰分离特性研究. 空气动力学学报, 2014, 32(5): 610-617 (Zhao Yunfei, Liu Wei, Liu Xu, et al. Unsteady shock/boundary layer interaction of compression corner at movement conditions. Acta Aerodynamica Sinica, 2014, 32(5): 610-617 (in Chinese) doi: 10.7638/kqdlxxb-2014.0089 [30] Deng XG. New High-order hybrid cell-edge and cell-node weighted compact nonlinear schemes//20th AIAA Computational Fluid Dynamics Conference, 2011 [31] Nonomura T, Iizuka N, Fujii K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Computers and Fluids, 2010, 39(2): 197-214 doi: 10.1016/j.compfluid.2009.08.005 [32] Nonomura T, Fujii K. Robust explicit formulation of weighted compact nonlinear scheme. Computers and Fluids, 2013, 85: 8-18 doi: 10.1016/j.compfluid.2012.09.001 [33] Wonga ML, Lelea SK. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows. Journal of Computational Physics, 2017, 339: 179-209 doi: 10.1016/j.jcp.2017.03.008 [34] Wang DF, Deng XG, Wang GX, et al. Developing a hybrid flux function suitable for hypersonic flow simulation with high-order methods. International Journal for Numerical Methods in Fluids, 2016, 81(5): 309-327 doi: 10.1002/fld.4186 [35] Zhang HB, Zhang F, Liu J, et al. A simple extended compact nonlinear scheme with adaptive dissipation control. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 1007-5704 [36] Deng XG, Xin L, Mao ML, et al. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow//17th AIAA Computational Fluid Dynamics Conference, 2005 [37] Wang SY, Dong YD, Deng XG, et al. High-order simulation of aeronautical separated flows with a Reynold stress model. Journal of Aircraft, 2018, 55(3): 1177-1190 doi: 10.2514/1.C034628 [38] Don WS, Li R, Wang BS, et al. A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws. Journal of Computational Physics, 2022: 448 [39] Deng XG. High-order accurate dissipative weighted compact nonlinear schemes. Science in China Series A-Mathematics Physics Astronomy, 2002, 45(3): 356-370 [40] Nonomura T, Fujii K. Effects of difference scheme type in high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2009, 228(10): 3533-3539 doi: 10.1016/j.jcp.2009.02.018 [41] Steger JL, Warming RF. Flux vector splitting of the inviscid equations with application to finite difference methods. Journal of Computational Physics, 1981, 40(2): 263-293 doi: 10.1016/0021-9991(81)90210-2 [42] Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 1997, 135(2): 250-258 doi: 10.1006/jcph.1997.5705 [43] Rusanov VV. The calculation of the interaction of non-stationary shock waves and obstacles. Ussr Computational Mathematics and Mathematical Physics, 1962, 1(2): 304-320 doi: 10.1016/0041-5553(62)90062-9 [44] Wang YH, Wang BS, Don WS. Generalized sensitivity parameter free fifth order WENO finite difference scheme with Z-type weights. Journal of Scientific Computing, 2019, 81(3): 1329-1358 doi: 10.1007/s10915-019-00998-z [45] Castro M, Costa B, Don WS. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 2011, 230(5): 1766-1792 doi: 10.1016/j.jcp.2010.11.028 [46] Lax PD. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193 doi: 10.1002/cpa.3160070112 [47] Sod GA. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 1978, 27(1): 1-31 doi: 10.1016/0021-9991(78)90023-2 [48] Woodward P, Colella P. The numerical stimulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 1984, 54(1): 115-173 doi: 10.1016/0021-9991(84)90142-6 [49] Lax P, Liu X. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. Siam Journal on Scientific Computing, 1998, 19(2): 319-40 doi: 10.1137/S1064827595291819 [50] Mikaelian KO. Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Physics of Fluids, 2005, 17: 094105 doi: 10.1063/1.2046712 -