ADAPTIVE MULTI-FIDELITY POLYNOMIAL CHAOS-KRIGING MODEL-BASED EFFICIENT AERODYNAMIC DESIGN OPTIMIZATION METHOD
-
摘要: 多可信度代理模型已经成为提高基于代理模型的优化算法效率和可信度水平最有效的手段之一. 然而目前流行的co-Kriging和分层Kriging (HK)等多可信度代理模型泛化能力不足, 缺乏对高阶/高非线性建模问题的适应性, 难以广泛应用. 文章基于发展的自适应多可信度多项式混沌-Kriging (MF-PCK)代理模型, 在提高建模效率和对高阶/高非线性问题近似准确率的同时, 建立了基于该自适应MF-PCK模型的高效全局气动优化方法. 在发展的方法中, 提出了基于MF-PCK模型的新型变可信度期望改进加点方法, 使代理优化算法效率进一步提高. 为了验证发展方法的全面表现, 将其应用在经典的数值函数算例以及多个跨音速气动外形的确定性优化和稳健优化设计中, 并与基于Kriging和HK模型的代理优化算法进行了全面比较. 结果表明, 发展的新型多可信度全局气动优化方法其优化效率相对于基于Kriging和HK模型的优化效率显著提高, 结果更好也更加可靠, 并且稳健优化设计效率和结果也更符合工程应用需求, 证明了其相对于基于Kriging和HK模型的代理优化算法的显著优势.
-
关键词:
- 多可信度代理模型 /
- 全局优化 /
- 跨音速气动优化 /
- 多可信度多项式混沌-克里金 /
- 稳健设计
Abstract: The multi-fidelity surrogate-assisted global aerodynamic optimization method has become one of the most efficient means to improve the efficiency and reliability of surrogate-based optimization algorithms. However, currently popular multi-fidelity surrogate models, e.g., co-Kriging and hierarchical Kriging (HK) models, lack the generalization ability and the adaptability to complex engineering applications, so that it is very difficult to promote them to be widely utilized. In this paper, based on the developed adaptive multi-fidelity polynomial chaos-Kriging (MF-PCK) surrogate model, an efficient global aerodynamic optimization framework based on the novel adaptive MF-PCK model is proposed while improving the modeling efficiency and the global approximation accuracy for highly-nonlinear and high-order response problems. In the development framework, we proposed a new adaptive multi-fidelity polynomial chaos-Kriging-based variable-fidelity expected improvement (MF-PCK-VF-EI) infilling strategy that can adaptively select new samples of both low- and high-fidelity, which further improves the efficiency and ability of this optimization framework. The developed methodology is verified by one analytical function example and demonstrated by three engineering application problems, including the deterministic optimization and the robust design optimization of several transonic aerodynamic shapes, compared with the popular Kriging-based and HK-based optimization algorithms. The results show that the global aerodynamic optimization efficiency of the developed method based on the novel adaptive MF-PCK model is higher than that based on the HK model and more than twice that based on the Kriging model, meantime with better and more reliable results. More importantly, the efficiency and performance of robust aerodynamic design optimization (RADO) for transonic aerodynamic shapes are prone to satisfy the requirements for complex engineering applications, which proves a significant advantage of the developed method over the popular Kriging-based and HK-based optimization algorithms. -
表 1 3种优化方法结果对比
Table 1. Comparison of optimization results using three methods
Optimization method The optimal
locationsThe optimal values Prediction errors/10−4 Kriging_EI [−3.1702579,12.2190345] 0.4174474 8.953 HK_VF-EI [3.1912351, 2.3199426] 0.4166618 7.642 MF-PCK_VF-EI [9.4185951, 2.4763138] 0.3981135 3.692 表 2 RAE2822网格收敛结果对比
Table 2. Comparison of computational results of different levels of grids
Grid level Grid number $ {C}_{l} $ $ {C}_{d} $ $ {C}_{m} $ α/(°) $ {L}_{1} $ $4.0\times10^3$ 0.824 0.024297 −0.096164 3.022 $ {L}_{2} $ $ 2.1\times {10}^{4} $ 0.824 0.021261 −0.092284 2.973 $ {L}_{3} $ $ 8.1\times {10}^{4} $ 0.824 0.020112 −0.092868 2.917 $ {L}_{4} $ $1.27\times10^5$ 0.824 0.019960 −0.096062 2.869 $ {L}_{5} $ $1.98\times10^5$ 0.824 0.019729 −0.092778 2.806 表 3 RAE2822翼型优化设计结果对比
Table 3. Comparison of optimization results of RAE2822 airfoil
Optimization methods $ {C}_{l} $ ${C}_{d}/10^{-3}$ Areas ${C}_{m}/10^{-3}$ Total time of CFD evaluations Kriging_EI 0.824 11.375 0.0779 −91.98 $ 70{N}_{h} + 40{N}_{h} = 110 t $ HK_VF-EI 0.824 11.282 0.0779 −91.75 $ 50{N}_{h} + 15{N}_{h} + 500{N}_{l}\approx 90 t $ MF-PCK_VF-EI 0.824 11.182 0.0779 −91.71 $ 30{\mathit{N}}_{\mathit{h}} + 15{\mathit{N}}_{\mathit{h}} + 500{\mathit{N}}_{\mathit{l}}\approx 70\mathit{t} $ -
[1] Forrester AI, Keane AJ. Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 2009, 45(1-3): 50-79 doi: 10.1016/j.paerosci.2008.11.001 [2] Queipo NV, Haftka RT, Shyy W, et al. Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 2005, 41(1): 1-28 doi: 10.1016/j.paerosci.2005.02.001 [3] Forrester DAIJ, Sóbester DA, Keane AJ. Engineering design via surrogate modelling: A practical guide. University of Southampton, 2008 [4] 韩忠华 许晨舟, 乔建领等. 基于代理模型的高效全局气动优化设计方法研究进展. 航空学报, 2020, 41(5): 623344 (Han Zhonghua, Xu Chenzhou, Qiao jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese) [5] Forrester AI, Sóbester A, Keane AJ. Multi-fidelity optimization via surrogate modelling. Proceedings of the Royal Society a:Mathematical, Physical and Engineering Sciences, 2007, 463(2088): 3251-3269 doi: 10.1098/rspa.2007.1900 [6] Peherstorfer B, Willcox K, Gunzburger M. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Review, 2018, 60(3): 550-591 doi: 10.1137/16M1082469 [7] Palar PS, Tsuchiya T, Parks GT. Multi-fidelity non-intrusive polynomial chaos based on regression. Computer Methods in Applied Mechanics & Engineering, 2016, 305: 579-606 [8] Gano SE, Renaud JE, Sanders B. Hybrid variable fidelity optimization by using a kriging-based scaling function. AIAA Journal, 2005, 43(11): 2422-2433 doi: 10.2514/1.12466 [9] Kennedy MC, O'Hagan A. Predicting the output from a complex computer code when fast approximations are available. Biometrika, 2000, 87(1): 1-13 doi: 10.1093/biomet/87.1.1 [10] Han ZH, Görtz S. Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA Journal, 2012, 50(9): 1885-1896 doi: 10.2514/1.J051354 [11] Keane AJ. Cokriging for robust design optimization. AIAA Journal, 2012, 50(11): 2351-2364 doi: 10.2514/1.J051391 [12] Toal DJ. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Structural and Multidisciplinary Optimization, 2015, 51(6): 1223-1245 doi: 10.1007/s00158-014-1209-5 [13] Zhao H, Gao ZH, Xu F, et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data. Structural and Multidisciplinary Optimization, 2021, 64(2): 829-858 doi: 10.1007/s00158-021-02895-2 [14] Ng LWT, Eldred M. Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012: 1852 [15] 赵欢, 高正红, 夏露. 基于新型多可信度代理模型的多目标优化方法研究. 航空学报, 2023, 44(2): 126962 (Zhao Huan, Gao Zhenghong, Xia Lu. Research on novel multi-fidelity surrogate model assisted many-objective optimization method. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 126962 (in Chinese) [16] Haftka RT, Villanueva D, Chaudhuri A. Parallel surrogate-assisted global optimization with expensive functions–A survey. Structural and Multidisciplinary Optimization, 2016, 54(1): 3-13 doi: 10.1007/s00158-016-1432-3 [17] Zhang Y, Han ZH, Zhang KS. Variable-fidelity expected improvement method for efficient global optimization of expensive functions. Structural and Multidisciplinary Optimization, 2018, 58(4): 1431-1451 doi: 10.1007/s00158-018-1971-x [18] Huang D, Allen TT, Notz WI, et al. Sequential kriging optimization using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization, 2006, 32(5): 369-382 doi: 10.1007/s00158-005-0587-0 [19] Jiang P, Cheng J, Zhou Q, et al. Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations. AIAA Journal, 2019, 57(12): 5416-5430 doi: 10.2514/1.J058283 [20] 赵欢, 高正红, 夏露. 基于新型高维代理模型的气动外形设计方法研究. 航空学报, 2023, 44(1): 126924 (Zhao Huan, Gao Zhenghong, Xia Lu. Research on novel high-dimensional surrogate model-based aerodynamic shape de-sign optimization method. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 126924 (in Chinese) [21] Salehi S, Raisee M, Cervantes MJ, et al. An efficient multifidelity ℓ1-minimization method for sparse polynomial chaos. Computer Methods in Applied Mechanics & Engineering, 2018, 334: 183-207 [22] Schobi R, Sudret B, Wiart J. Polynomial-chaos-based Kriging. International Journal for Uncertainty Quantification, 2015, 5(2): 171-193 doi: 10.1615/Int.J.UncertaintyQuantification.2015012467 [23] Zhao H, Gao Z, Xu F, et al. An efficient adaptive forward–backward selection method for sparse polynomial chaos expansion. Computer Methods in Applied Mechanics & Engineering, 2019, 355: 456-491 [24] Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13(4): 455-492 doi: 10.1023/A:1008306431147 [25] 赵欢, 高正红, 夏露. 高速自然层流翼型高效气动稳健优化设计方法研究. 航空学报, 2021, 42(7): 124894 (Zhao Huan, Gao Zhenghong, Xia Lu. Research on efficient robust aerodynamic design optimization method of high-speed and high-lift NLF airfoil. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124894 (in Chinese) doi: 10.7527/S1000-6893.2020.24894 [26] Zhao H, Gao Z, Xu F, et al. Review of robust aerodynamic design optimization for air vehicles. Archives of Computational Methods in Engineering, 2019, 26(3): 685-732 doi: 10.1007/s11831-018-9259-2 [27] 赵欢. 基于代理模型的高效气动优化与气动稳健设计方法研究. [博士论文]. 西安: 西北工业大学, 2020Zhao Huan. Research on efficient surrogate-based aerodynamic optimization and robust aerodynamic design methods. [PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2020 (in Chinese) [28] Zhao H, Gao Z, Gao Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerospace Science and Technology, 2017, 68: 530-542 doi: 10.1016/j.ast.2017.06.009 [29] Zhao H, Gao Z. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles. Engineering Computations, 2019, 36(3): 971-996 doi: 10.1108/EC-05-2018-0215 [30] Zhao H, Gao Z, Xia L. Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model. Computers & Fluids, 2022, 246: 105643 [31] 李焦赞 高正红. 基于几何不确定性的翼型多目标稳健优化设计. 力学学报, 2011, 43(3): 611-615 (Li Jiaozan, Gao Zhenghong. Multi objective optimization methodology for airfoil robust design under geometry uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 611-615 (in Chinese) doi: 10.6052/0459-1879-2011-3-lxxb2010-066 -