EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国海域盆地CO2地质封存选址方案与构造力学分析

李春峰 赵学婷 段威 吴涛 姚泽伟 陈国新 李刚 彭希

李春峰, 赵学婷, 段威, 吴涛, 姚泽伟, 陈国新, 李刚, 彭希. 中国海域盆地CO2地质封存选址方案与构造力学分析. 力学学报, 2023, 55(2): 1-13 doi: 10.6052/0459-1879-22-384
引用本文: 李春峰, 赵学婷, 段威, 吴涛, 姚泽伟, 陈国新, 李刚, 彭希. 中国海域盆地CO2地质封存选址方案与构造力学分析. 力学学报, 2023, 55(2): 1-13 doi: 10.6052/0459-1879-22-384
Li Chunfeng, Zhao Xueting, Duan Wei, Wu Tao, Yao Zewei, Chen Guoxin, Li Gang, Peng Xi. Strategic and geodynamic analyses of geo-sequestration of CO2 in China offshore sedimentary basins. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-13 doi: 10.6052/0459-1879-22-384
Citation: Li Chunfeng, Zhao Xueting, Duan Wei, Wu Tao, Yao Zewei, Chen Guoxin, Li Gang, Peng Xi. Strategic and geodynamic analyses of geo-sequestration of CO2 in China offshore sedimentary basins. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-13 doi: 10.6052/0459-1879-22-384

中国海域盆地CO2地质封存选址方案与构造力学分析

doi: 10.6052/0459-1879-22-384
基金项目: 海南省自然科学基金(421CXTD441), 国家自然科学基金重大研究计划重点项目(91858213, 42176055, 41776057, 41906053)和舟山市校合作项目(2019C81058)资助
详细信息
    通讯作者:

    李春峰, 教授, 主要研究方向为海洋地球物理与地球动力学. E-mail: cfli@zju.edu.cn

  • 中图分类号: P548, P553

STRATEGIC AND GEODYNAMIC ANALYSES OF GEO-SEQUESTRATION OF CO2 IN CHINA OFFSHORE SEDIMENTARY BASINS

  • 摘要: 本文围绕“碳达峰、碳中和”国家战略目标, 从断裂活动、盆地压力、构造沉降特征、地震活动性和地温梯度等角度综合分析中国海域盆地适宜大规模CO2地质封存的条件与目标, 在宏观上认为东海陆架盆地、珠江口盆地、琼东南盆地东部以及南海中央海盆是最佳CO2地质封存区域, 但这并不排除其他盆地内部存在适宜的CO2地质封存点, 因为具体某个地质封存工程目标的范围相对较小. 东海陆架盆地、珠江口盆地和琼东南盆地内适用于CO2地质封存的地层包括盆地晚期快速沉降期沉积层的底部咸水层和热沉降沉积层内的含油气单元, 在适宜的海底之下800~4000 m深度范围内, 孔隙度大于10%, 静水压力约在8~40 MPa之间、静岩压力约在13~83 MPa之间变化. 在此压力范围和合适的地温梯度范围内, CO2以超临界状态存在, 其密度随温压变化相对稳定, 有利于CO2的流动和渗透. 另外, 盆地内的基性岩浆岩建造的规模和数量也为CO2地质封存和永久矿化提供了很好的条件. 虽然工程难度大和代价高, 但南海中央海盆是非常安全的适宜封存CO2的区域, 注入到海底大洋玄武岩的CO2因为玄武岩矿化需要较长时间, 可能存在CO2泄露, 但是除了玄武岩矿化以外, 可能泄露的CO2在后面的逃逸中还可以被多次封存, 包括: 火山碎屑岩矿化、海底沉积物封存、海底沉积物CO2水合物封存、碳酸钙中和反应、海底碳湖和海洋溶解CO2等. 南海中央海盆目前6个钻遇基底大洋玄武岩的国际大洋发现计划(IODP)钻孔可以为先导性南海海盆CO2封存实验提供很好的科学与工程基础.

     

  • 图  1  中国海域沉积盆地分布图. 红色线段标注的是区域断裂带. 南海海盆残留洋中脊用红色双虚线表示. NYB: 北黄海盆地; SYB-N: 南黄海盆地北部凹陷; SYB-S: 南黄海盆地南部凹陷; TNB: 台西南盆地; PRMB: 珠江口盆地; BB: 北部湾盆地; QB: 琼东南盆地; YB: 莺歌海盆地. 红色五角星显示两个钻井n1与h1的位置

    Figure  1.  Distribution of China offshore sedimentary basins. The red solid lines indicate fault zones. The relict mid-ocean ridge in the South China Sea Basin is represented by red double dashed lines. NYB: North Yellow Sea Basin; SYB-N: Northern sag in the South Yellow Sea Basin; SYB-S: Southern sag in the South Yellow Sea Basin; TNB: Taixinan Basin; PRMB: Pearl River Mouth Basin; BB: Beibu Gulf Basin; QB: Qiongdongnan Basin; YB: Yinggehai Basin. Red stars show the sites of two wells n1 and h1

    图  2  不同盆地内不同钻井处的代表性沉降特征例图, 显示了沉积盆地演化的三个阶段, 即初始快速沉降、中期热沉降以及晚期异常快速沉降. (a)东海陆架盆地n1井处的总沉降与构造沉降曲线; (a′) n1井处的热沉降计算结果及其理论拟合曲线; (b)东海陆架盆地h1井处的总沉降与构造沉降曲线; (b′) h1井处的热沉降计算结果及其理论拟合曲线; (c)琼东南盆地L1井处的总沉降与构造沉降曲线; (c′) L1井处的热沉降计算结果及其理论拟合曲线

    Figure  2.  Representative examples of subsidence characteristics at different wells in different basins, which show three stages of subsidence, i.e., initial rapid rifting subsidence, thermal subsidence, and late-stage anomalous subsidence. (a) The total and tectonic subsidence curves at well n1 in the East China Sea Shelf Basin; (a') The calculated thermal subsidence at well n1 and its theoretical fit; (b) The total and tectonic subsidence curves at well h1 in the East China Sea Shelf Basin; (b') The calculated thermal subsidence at well h1 and its theoretical fit; (c) The total and tectonic subsidence curves at well L1 in the Qiongdongnan Basin; (c') The calculated thermal subsidence at well L1 and its theoretical fit

    2  不同盆地内不同钻井处的代表性沉降特征例图, 显示了沉积盆地演化的三个阶段, 即初始快速沉降、中期热沉降以及晚期异常快速沉降. (a)东海陆架盆地n1井处的总沉降与构造沉降曲线; (a′) n1井处的热沉降计算结果及其理论拟合曲线; (b)东海陆架盆地h1井处的总沉降与构造沉降曲线; (b′) h1井处的热沉降计算结果及其理论拟合曲线; (c)琼东南盆地L1井处的总沉降与构造沉降曲线; (c′) L1井处的热沉降计算结果及其理论拟合曲线(续)

    2.  Representative examples of subsidence characteristics at different wells in different basins, which show three stages of subsidence, i.e., initial rapid rifting subsidence, thermal subsidence, and late-stage anomalous subsidence. (a) The total and tectonic subsidence curves at well n1 in the East China Sea Shelf Basin; (a′) The calculated thermal subsidence at well n1 and its theoretical fit; (b) The total and tectonic subsidence curves at well h1 in the East China Sea Shelf Basin; (b′) The calculated thermal subsidence at well h1 and its theoretical fit; (c) The total and tectonic subsidence curves at well L1 in the Qiongdongnan Basin; (c′) The calculated thermal subsidence at well L1 and its theoretical fit (continued)

    图  3  东海陆架盆地(a)反射地震剖面图及其(b)解释结果. TWTT*双程地震走时. n1与h1为两个工业钻井. T10: 中新世−上新世界面(约5 Ma); T40: 破裂不整合面(初始同张裂沉积与张裂后热沉降沉积之间的界面, 约40 Ma); Tg: 新生代沉积基底界面. 剖面位置见图1AA'

    Figure  3.  (a) A seismic reflection section in the East China Sea Shelf Basin and (b) its interpretation. TWTT means two-way travel time. n1 and h1 indicate two industrial drill wells. T10: Miocene-Pliocene interface ( ~ 5 Ma); T40: Breakup unconformity (about 40 Ma, between initial syn-rift sediments and post-rift sediments during thermal subsidence); Tg: Cenozoic sedimentary basement. See Fig. 1 for the location of the section AA'

    3  东海陆架盆地(a)反射地震剖面图及其(b)解释结果. TWTT*双程地震走时. n1与h1为两个工业钻井. T10: 中新世−上新世界面(约5 Ma); T40: 破裂不整合面(初始同张裂沉积与张裂后热沉降沉积之间的界面, 约40 Ma); Tg: 新生代沉积基底界面. 剖面位置见图1AA'(续)

    3.  (a) A seismic reflection section in the East China Sea Shelf Basin and (b) its interpretation. TWTT means two-way travel time. n1 and h1 indicate two industrial drill wells. T10: Miocene-Pliocene interface ( ~ 5 Ma); T40: Breakup unconformity (about 40 Ma, between initial syn-rift sediments and post-rift sediments during thermal subsidence); Tg: Cenozoic sedimentary basement. See Fig. 1 for the location of the section AA' (continued)

    图  4  (a)中国海区域居里点深度图. (b)中国海区域地表热流图. 红点为热流测量点, 红色线段为断裂带, 白色线条的围限区域分别是四川盆地(南)和鄂尔多斯盆地(北)

    Figure  4.  (a) Curie-point depth of China Seas. (b) Surface heat flow of China Seas. The red dot indicates the heat flow point, the red line segment indicates the fault zone, and the areas circled by white lines are the Sichuan Basin (south) and Ordos Basin (north)

    图  5  中国海域构造与地震分布图. (a)中国海域北部构造与地震分布图(1970年1月1日至2008年2月30日发生的M≥3.0地震, 数据来自中国地震台网http://www.csndmc.ac.cn/). (b)中国海域南部构造与地震分布图(共7801个地震). 图中同时显示了南海深海盆内多次大洋钻探站位位置图[21-22]. (a)和(b)中圆圈大小分别与震级成比例. 红色线段标注的为区域大断裂带. TLF: 郯庐断裂; JXF: 嘉响断裂; JSF: 江绍断裂; CNF: 长乐-南澳断裂; DHF: 东海断裂; ZNF: 中南断裂

    Figure  5.  Regional tectonics and earthquake distribution of China Seas. (a) Regional tectonics and earthquake distribution of the northern China Seas (M ≥ 3.0 earthquake occurred from January 1, 1970 to February 30, 2008. The data are from China Seismic Network http://www.csndmc.ac.cn/). (b) Regional tectonics and earthquake distribution of southern China Seas (a total of 7801 earthquakes). Also shown are the drill sites of multiple International Ocean Dsicovery Program in the deep-sea basin of the South China Sea[21-22]. The circle size in (a) and (b) is proportional to the earthquake magnitude, respectively. The red line segment is marked as the regional large fault zone. TLF: Tanlu Fault; JXF: Jiaxiang Fault; JSF: Jiangshao Fault; CNF: Changle-Nanao Fault; DHF: East China Sea Fault; ZNF: Central South Fault

    图  6  (a)东海陆架盆地测井资料确定的孔隙度(ϕ)和密度(ρ)随海底以下深度(z)的变化曲线. (b)静水压力和静岩压力P(分别由水的密度以及(a)中的岩层密度计算而来)随深度(z)的变化曲线

    Figure  6.  (a) The variations of porosity (ϕ) and density (ρ) with depth below sea floor (z) derived from drilling-logging data in the East China Sea Shelf Basin. (b) The variation of hydrostatic and lithostatic pressure (P) with depth (z) based on water density and the density profile shown in (a), respectively

    图  7  琼东南盆地西部某钻井揭示的深部异常高泥浆压力(P)和高孔隙度(ϕ)

    Figure  7.  Abnormally high mud pressure (P) and high porosity (ϕ) at depth revealed by well data in the western Qiongdongnan Basin

    图  8  中国海域沉积盆地碳封存目标

    Figure  8.  Carbon storage targets in China offshore sedimentary basins

    图  9  东海陆架盆地格局与反射地震所解释出的盆地内新生代岩浆活动分布图

    Figure  9.  The framework of the East China Sea Shelf Basin and the distribution of Cenozoic magmatic features in the basin interpreted from reflection seismic data

    图  10  (a) ~ (c)为东海陆架盆地晚期侵入岩浆岩体在反射地震剖面中所显示的形态(强地震振幅). 斜线为解释的断层; Tom为渐新世-中新世不整合面. (d)碟状侵入的岩浆岩岩席在水平地震时间切片上的形态

    Figure  10.  (a) ~ (c) Features of intrusive magmatic bodes (in high seismic amplitude on seismic sections) from the East China Sea Continental Shelf Basin. Oblique lines represent faults; Tom indicates the Oligocene-Miocene unconformity. (d) The pattern of an intrusive magmatic sill on a horizontal seismic time slice

    图  11  南海IODP349航次U1431站位的大洋玄武岩蚀变(修改自Li等 [21]). (a)和(b)背景蚀变之上的岩芯碳酸盐岩、磁铁矿和铁氧化物脉及其蚀变晕. (c)沿着先存断裂发育的碳酸盐岩脉的岩芯照片; (c′)解释结果示意图. (d)弯状脉和放射状脉网络显示白色方解石充填了与岩浆冷却过程有关的裂隙; (d′)解释结果示意图

    Figure  11.  Ocean basalt alteration at Site U1431 of IODP Expedition 349 in the South China Sea (modified after Li et al. [15]). (a) and (b) Carbonate, magnetite and iron oxide veins above background alteration and their alteration halos. (c) Core photographs of carbonate veins developed in the preexisting faults; (c′) Schematic diagram of interpretations. (d) Curved and radial vein networks show that white calcite fills fractures related to magma cooling process; (d′) Schematic diagram of interpretations.

    表  1  中国海域大型盆地构造力学属性概况

    Table  1.   Geodynamic properties of large China offshore sedimentary basins

    BasinsFault activityPressureTectonic subsidenceSeismicityGeothermal gradient
    Bohai Bayhighnormallate-stage abnormally fasthighintermediate
    Southern Yellow Seahighnormallate-stage abnormally fasthighlow
    East China Sea Continental Shelflownormallate-stage abnormally fastlowlow
    Pearl River Mouthlownormal, locally overpressurelate-stage abnormally fastlowlow
    Qiongdongnanlownormal, locally overpressurelate-stage abnormally fastlowlow
    Yinggehaihighoverpressurefastintermediatehigh
    Central South China Sealownormalthermalweakhigh
    下载: 导出CSV
  • [1] 文冬光, 郭建强, 张森琦等. 中国二氧化碳地质储存研究进展. 中国地质, 2014, 41(5): 1716-1723 (Wen Dongguang, Guo Jianqiang, Zhang Senqi, et a1. The progress in the research on carbon dioxide geological storage in China. Geology in China, 2014, 41(5): 1716-1723 (in Chinese)
    [2] 王江海, 孙贤贤, 徐小明等. 海洋碳封存技术: 现状、问题与未来. 地球科学进展, 2015, 30(1): 17-25 (Wang Jianghai, Sun Xianxian, Xu Xiaoming, et al. Marine carbon sequestration: current situation, problems and future. Advances in Earth Science, 2015, 30(1): 17-25 (in Chinese) doi: 10.11867/j.issn.1001-8166.2015.01.0017
    [3] 李 琦, 魏亚妮, 刘桂臻. 中国沉积盆地深部CO2 地质封存联合咸水开采容量评估. 南水北调与水利科技, 2013, 11(4): 93-96 (Li Qi, Wei Yani, Liu Guizhen. Assessment of CO2 storage capacity and saline water development in sedimentary basins of China. South-to-North Water Transfers and Water Science &Technology, 2013, 11(4): 93-96 (in Chinese)
    [4] 孙腾民, 刘世奇, 汪 涛. 中国二氧化碳地质封存潜力评价研究进展. 煤炭科学技术, 2021, 49(11): 10-20 (Sun Tengmin, Liu Shiqi, Wang Tao. Research advances on evaluation of CO2 geological storage potential in China. Coal Science and Technology, 2021, 49(11): 10-20 (in Chinese)
    [5] 叶建平, 张兵, 韩学婷等. 深煤层井组CO2 注入提高采收率关键参数模拟和试验. 煤炭学报, 2016, 41(1): 149-155 (Ye Jianping, Zhang Bing, Han Xueting, et al. Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane. Journal of China Coal Society, 2016, 41(1): 149-155 (in Chinese)
    [6] 郑艳, 陈胜礼, 张炜等. 江汉盆地江陵凹陷二氧化碳地质封存数值模拟. 地质科技情报, 2009, 28(4): 75-82 (Zheng Yan, Chen Shengli, Zhang Wei, et al. Numerical simulation on geological storage of carbon dioxide in Jiangling Depression, Jianghan Basin, China. Geological Science and Technology Information, 2009, 28(4): 75-82 (in Chinese)
    [7] 崔振东, 刘大安, 曾荣树等. 二氧化碳在砂岩透镜体中充注封存的盖层岩石抗断裂性能分析. 工程地质学报, 2009, 18(2): 204-210 (Cui Zhendong, Liu Da’an, Zeng Rongshu, et al. Fracture resistance analysis on the cap rock of the sand lens reservoir due to carbon dioxide injection and storage. Journal of Engineering Geology, 2009, 18(2): 204-210 (in Chinese)
    [8] Schrag DP. Storage of carbon dioxide in offshore sediments. Science, 2009, 325(5948): 1658-1659 doi: 10.1126/science.1175750
    [9] Haszeldine RS. Carbon capture and storage: how green can black be ? Science, 2009, 325: 1647-1652 doi: 10.1126/science.1172246
    [10] 李文平. CO2海底地质封存技术基础理论及现状分析. 河南科技, 2021, 10: 141-143 (Li Wenping. Basic theory and present situation analysis of carbon dioxide geological. Henan Science and Technology, 2021, 10: 141-143 (in Chinese) doi: 10.3969/j.issn.1003-5168.2021.10.051
    [11] Oya S, Aiffaa M, Ohmura R, et al. Formation, growth and sintering of CO2 hydrate crystals in liquid water with continuous CO2 supply: implication for subsurface CO2 sequestration. International Journal of Greenhouse Gas Control, 2017, 63: 386-391 doi: 10.1016/j.ijggc.2017.06.007
    [12] Gauteplass J, Almenningen S, Ersland G, et al. Multiscale investigation of CO2 hydrate self-sealing potential for carbon geo-sequestration. Chemical Engineering Journal, 2020, 381: 122646
    [13] 李洛丹, 刘妮, 刘道平. 二氧化碳海洋封存的研究进展. 能源与环境, 2008, 6: 11-12 (Li Luodan, Liu Ni, Liu Daoping. Research progress of carbon dioxide marine storage. Energy and Environment, 2008, 6: 11-12 (in Chinese)
    [14] Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443 doi: 10.1016/j.rser.2014.07.093
    [15] Matter JM, Stute M, Snæbjörnsdóttir SÓ, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 2016, 352(6291): 1312-1314
    [16] Goldberg D, Aston L, Bonneville A, et al. Geological storage of CO2 in sub-seafloor basalt: the CarbonSAFE pre-feasibility study offshore Washington State and British Columbia. Energy Procedia, 2018, 146: 158-165 doi: 10.1016/j.egypro.2018.07.020
    [17] Li CF, Zhou Z, Ge H, et al. Rifting process of the Xihu Depression, East China Sea Basin. Tectonophysics, 2009, 472(1-4): 135-147 doi: 10.1016/j.tecto.2008.04.026
    [18] 杨军, 施小斌, 王振峰等. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因. 海洋地质与第四纪地质, 2015, 35(1): 10 (Yang Jun, Shi Xiaobin, Wang Zhenfeng, et al. Origin of syn-rift subsidence deficit rapid post-rift subsidence in Qiongdongnan Basin. Marine Geology &Quaternary Geology, 2015, 35(1): 10 (in Chinese)
    [19] 李亚敏, 施小斌, 徐辉龙等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制. 吉林大学学报:地球科学版, 2012, 42(1): 12 (Li Yamin, Shi Xiaobin, Xu Huilong, et al. Temporal and spatial distribution of tectonic subsidence and distribution on formation mechanism of anomalous post-rift tectonic subsidence in the Qiongdongnan Basin. Journal of Jilin University:Earth Science Edition, 2012, 42(1): 12 (in Chinese)
    [20] Wang, P, Li, Q, Li, CF. Geology of the China Seas. Elsevier, 2014, 1-687
    [21] Li CF, Lin J, Kulhanek DK, et al. South China Sea Tectonics: College Station, TX (International Ocean Discovery Program)//Proceedings of the InternationalOcean Discovery Program, 2015: 349
    [22] Sun Z, Jian Z, Stock JM, et al. South China Sea Rifted Margin. College Station, TX (International Ocean Discovery Program)//Proceedings of the International Ocean Discovery Program, 2018: 367-368
    [23] Li CF, Li J, Ding W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1377-1399
    [24] Li CF, Zhou Z, Ge H, et al. Correlations between erosions and relative uplifts from the central inversion zone of the Xihu Depression, East China Sea Basin. Terrestrial, Atmospheric and Oceanic Sciences, 2007, 18(4): 757-776 doi: 10.3319/TAO.2007.18.4.757(TT)
    [25] 赵学婷. 南海琼东南盆地构造沉降特征与CO2地质储藏潜力分析. [学士论文]. 青岛: 中国石油大学(华东), 2022

    Zhao Xueting. Analysis of tectonic subsidence characteristics and CO2 geological storage potential in Qiongdongnan Basin, South China Sea. [Bachelor Thesis]. Qingdao: China University of Petroleum (East China), 2022 (in Chinese)
    [26] Duan W, Li CF, Chen XG, et al. Diagenetic differences caused by gas charging with different compositions in the XF13 Block of the Yinggehai Basin, South China Sea. AAPG Bulletin, 2020, 104(4): 735-765
    [27] Duan W, Li CF, Luo C, et al. Effect of formation overpressure on the reservoir diagenesis and its petroleum geological significance for the DF11 block of the Yinggehai Basin, the South China Sea. Marine and Petroleum Geology, 2018, 97: 49-65
    [28] 张启明, 董伟良. 中国含油气盆地中的超压体系. 石油学报, 2000, 21(6): 1-11 (Zhang Qiming, Dong Weiliang. Overpressure system of hydrocarbon-bearing basins in China. Acta Petrolei Sinica, 2000, 21(6): 1-11 (in Chinese)
    [29] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究. [博士论文]. 大连海事大学, 2014

    Huo Chuanlin. Study on the potential evaluation and storage areas of the carbon dioxide seabed storage in offshore China. [PhD Thesis]. Dalian Maritime University, 2014 (in Chinese))
    [30] Yao Z, Li CF, He G, et al. Cenozoic sill intrusion in the central and southern East China Sea Shelf Basin. Marine and Petroleum Geology, 2020, 119: 104465
    [31] 苏程, 李春峰, 葛和平. 东海陆架盆地西湖凹陷渐-中新世异常反射体的特征与成因. 海洋学研究, 2010, 28(4): 14-21 (Su Cheng, Li Chunfeng, Ge Heping. 2010, Characteristic and formation cause of anomalous reflection on Oligocene and Miocene transition in Xihu Depression, East China Sea Basin. Oceanography Research, 2010, 28(4): 14-21 (in Chinese)
    [32] Matter JM, Kelemen PB. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci., 2009, 2(12): 837-841
    [33] McGrail B. Wallula basalt pilot demonstration project:post-injection results and conclusions. Energy Procedia, 2017, 114: 5783-5790
    [34] McGrail BP, Schaef HT, Ho AM, et al. Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical Research: Solid Earth, 2006, 111(12): 1-13
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  46
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 录用日期:  2022-10-27
  • 网络出版日期:  2022-10-28

目录

    /

    返回文章
    返回