EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泊松白噪声激励下强非线性系统的半解析瞬态解

叶文伟 陈林聪 孙建桥

叶文伟, 陈林聪, 孙建桥. 泊松白噪声激励下强非线性系统的半解析瞬态解. 力学学报, 2022, 54(12): 3468-3476 doi: 10.6052/0459-1879-22-381
引用本文: 叶文伟, 陈林聪, 孙建桥. 泊松白噪声激励下强非线性系统的半解析瞬态解. 力学学报, 2022, 54(12): 3468-3476 doi: 10.6052/0459-1879-22-381
Ye Wenwei, Chen Lincong, Sun Jian-Qiao. Semi-analytical transient solutions for strong nonlinear systems excited by Poisson white noise. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3468-3476 doi: 10.6052/0459-1879-22-381
Citation: Ye Wenwei, Chen Lincong, Sun Jian-Qiao. Semi-analytical transient solutions for strong nonlinear systems excited by Poisson white noise. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3468-3476 doi: 10.6052/0459-1879-22-381

泊松白噪声激励下强非线性系统的半解析瞬态解

doi: 10.6052/0459-1879-22-381
基金项目: 国家自然科学基金(12072118)、福建省杰出青年科学基金(2021J06024)和厦门青年创新基金(3502Z20206005)资助项目
详细信息
    作者简介:

    陈林聪, 教授, 主要研究方向: 非线性随机振动与控制. E-mail: lincongchen@hqu.edu.cn

  • 中图分类号: O324

SEMI-ANALYTICAL TRANSIENT SOLUTIONS FOR STRONG NONLINEAR SYSTEMS EXCITED BY POISSON WHITE NOISE

  • 摘要: 自然界与工程中都普遍存在着随机扰动, 且大多数呈现出固有的非高斯性质, 若采用高斯激励建模可能会导致巨大的误差. 泊松白噪声作为一种典型且重要的非高斯激励模型, 已引起了广泛的关注. 目前, 泊松白噪声激励下系统的动态特性分析主要集中于稳态响应的研究, 而针对瞬态响应的求解难度仍较大, 需进一步发展. 本文引入径向基神经网络, 提出了一种泊松白噪声激励下单自由度强非线性系统瞬态响应预测的高效半解析方法. 首先将广义Fokker-Plank-Kolmogorov (FPK) 方程的瞬态解表示为一组含时变待定权值系数的高斯径向基神经网络; 然后采用有限差分法离散时间导数项, 并结合随机取样技术构造含时间递推式的损失函数; 最后通过拉格朗日乘子法使得损失函数最小化获得时变最优权值系数. 作为算例, 探究了两个经典强非线性系统, 并采用蒙特卡罗模拟方法对解析结果加以验证. 结果表明: 本文方法所获得的瞬时概率密度函数与蒙特卡罗模拟数据吻合地较好, 并且算法具备较高的计算效率. 在系统响应的整个演化过程中, 本文所提方法能够非常有效地捕捉到系统响应在各个时刻下的复杂非线性特征. 此外, 本文方法所获得的高精度半解析瞬态解, 不仅可作为基准解检验其他非线性随机振动分析方法的精度, 对于结构的优化设计也存在巨大的潜在应用价值.

     

  • 图  1  径向基神经网络算法流程图

    Figure  1.  The flowchart of the RBF-NN scheme

    图  2  不同时刻系统 (26) 的边缘概率密度函数 (实线: 径向基神经网络解, 符号: 蒙特卡罗模拟结果)

    Figure  2.  Marginal PDFs of system (26) at different time (lines: RBF-NN solutions, symbols: MCS results)

    图  3  系统 (26) 的位移概率密度函数演化

    Figure  3.  The displacement PDF evolution of system (26)

    图  4  t = 6 s时系统 (26) 的联合概率密度函数

    Figure  4.  The joint PDF of system (26) at t = 6 s

    图  5  不同中心域网格数对算法的均方根误差与计算时间的影响

    Figure  5.  The effect of different number of meshes in the central domain on the root mean square (RMS) error and CPU time of the algorithm

    图  6  不同时刻系统 (27) 的边缘概率密度函数 (实线: 径向基神经网络解, 符号: 蒙特卡罗模拟结果)

    Figure  6.  Marginal PDFs of system (27) at different time (lines: RBF-NN solutions, symbols: MCS results)

    图  7  系统 (27) 的位移概率密度函数演化

    Figure  7.  The displacement PDF evolution of system (27)

    图  8  t = 80 s时系统 (27) 的联合概率密度函数

    Figure  8.  The joint PDF of system (27) at t = 80 s

  • [1] 朱位秋, 蔡国强. 随机动力学引论. 北京: 科学出版社, 2017

    Zhu Weiqiu, Cai Guoqiang. Introduction to Stochastic Dynamics. Beijing: Science Press, 2017 (in Chinese))
    [2] 徐伟. 非线性随机动力学的若干数值方法及应用. 北京: 科学出版社, 2013

    Xu Wei. Numerical Analysis Methods for Stochastic Dynamical System. Beijing: Science Press, 2013 (in Chinese)
    [3] Li J, Chen JB. Stochastic Dynamics of Structures. John Wiley & Sons, 2009
    [4] Sun JQ. Stochastic Dynamics and Control. Elsevier, 2006
    [5] Zhu WQ, Cai GQ. Nonlinear stochastic dynamics: A survey of recent developments. Acta Mechanica Sinica, 2002, 18(6): 551-566 doi: 10.1007/BF02487958
    [6] Dubkov AA, Kharcheva AA. Steady-state probability characteristics of Verhulst and Hongler models with multiplicative white Poisson noise. The European Physical Journal B, 2019, 92(10): 222-227 doi: 10.1140/epjb/e2019-100020-1
    [7] Jia WT, Zhu WQ, Xu Y. Stochastic averaging of quasi partially integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. International Journal of Non-Linear Mechanics, 2017, 93(1): 82-95
    [8] Pan SS, Zhu WQ. Dynamics of a prey-predator system under Poisson white noise excitation. Acta Mechanica Sinica, 2014, 30(5): 739-745 doi: 10.1007/s10409-014-0069-y
    [9] Zhu HT. Probabilistic solution of some multi-degree-of-freedom nonlinear systems under external independent Poisson white noises. The Journal of the Acoustical Society of America, 2012, 131(6): 4550-4557 doi: 10.1121/1.4714766
    [10] Wu Y, Zhu WQ. Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises. Physics Letters A, 2008, 372(5): 623-630 doi: 10.1016/j.physleta.2007.07.083
    [11] Muscolino G, Ricciardi G, Cacciola P. Monte Carlo simulation in the stochastic analysis of non-linear systems under external stationary Poisson white noise input. International Journal of Non-Linear Mechanics, 2003, 38(8): 1269-1283 doi: 10.1016/S0020-7462(02)00072-0
    [12] Grigoriu M. Stochastic Calculus: Applications in Science and Engineering. Springer, 2002
    [13] Ren ZC, Xu W. An improved path integration method for nonlinear systems under Poisson white noise excitation. Applied Mathematics and Computation, 2020, 373(5): 125036-125049
    [14] Lyu MZ, Chen JB, Pirrotta A. A novel method based on augmented Markov vector process for the time-variant extreme value distribution of stochastic dynamical systems enforced by Poisson white noise. Communications in Nonlinear Science and Numerical Simulation, 2020, 80(1): 104974-104989
    [15] Di Matteo A, Di Paola M, Pirrotta A. Path integral solution for nonlinear systems under parametric Poissonian white noise input. Probabilistic Engineering Mechanics, 2016, 44(4): 89-98
    [16] Yue XL, Xu W, Xu Y, et al. Non-stationary response of MDOF dynamical systems under combined Gaussian and Poisson white noises by the generalized cell mapping method. Probabilistic Engineering Mechanics, 2019, 55(1): 102-108
    [17] 岳晓乐, 徐伟, 张莹等. 加性和乘性泊松白噪声联合激励下光滑非连续振子的随机响应. 物理学报, 2014, 63(6): 82-87 (Yue Xiaole, Xu Wei, Zhang Ying, et al. Stochastic responses of smooth discontinuous oscillator under additive and multiplicative Poisson white noise excitation. Acta Physica Sinica, 2014, 63(6): 82-87 (in Chinese) doi: 10.7498/aps.63.060502
    [18] Han HG, Ma ML, Qiao JF. Accelerated gradient algorithm for RBF neural network. Neurocomputing, 2021, 441(6): 237-247
    [19] Krzyżak A, Niemann H. Convergence properties of radial basis functions networks in function learning. Procedia Computer Science, 2021, 192: 3761-3767 doi: 10.1016/j.procs.2021.09.150
    [20] Hao GC, Guo J, Zhang W, et al. High-precision chaotic radial basis function neural network model: Data forecasting for the earth electromagnetic signal before a strong earthquake. Geoscience Frontiers, 2022, 13(1): 101315-101324 doi: 10.1016/j.gsf.2021.101315
    [21] 李韶华, 王桂洋, 杨泽坤等. 基于DRBF-EKF算法的车辆质心侧偏角与路面附着系数动态联合估计. 力学学报. 2022, 54(7): 1853-1865

    Li Shaohua, Wang Guiyang, Yang Zekun, et al. Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1853-1865. (in Chinese))
    [22] Jiang QH, Zhu LL, Shu C, et al. Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow. Acta Mechanica Sinica, 2021, 37(12): 1757-1772 doi: 10.1007/s10409-021-01144-5
    [23] Pesce V, Silvestrini S, Lavagna M. Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation. Aerospace Science and Technology, 2020, 96(1): 105527-105536
    [24] Chen H, Kong L, Leng WJ. Numerical solution of PDEs via integrated radial basis function networks with adaptive training algorithm. Applied Soft Computing, 2011, 11(1): 855-860 doi: 10.1016/j.asoc.2010.01.005
    [25] Mai-Duy N, Tanner RI. Solving high-order partial differential equations with indirect radial basis function networks. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1636-1654 doi: 10.1002/nme.1332
    [26] Li JY, Luo SW, Qi YJ, et al. Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Networks, 2003, 16(5): 729-734
    [27] Wang X, Jiang J, Hong L, et al. Random vibration analysis with radial basis function neural networks. International Journal of Dynamics and Control, 2021, doi: 10.1007/s40435-021-00893-2
    [28] Wang X, Jiang J, Hong L, et al. First-passage problem in random vibrations with radial basis function neural networks. Journal of Vibration and Acoustics, 2022, 144(5): 051014-051026 doi: 10.1115/1.4054437
    [29] Nelles O. Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes. Spring, 2020
    [30] Ye WW, Chen LC, Qian JM, et al. RBFNN for calculating the stationary response of SDOF nonlinear systems excited by Poisson white noise. International Journal of Structural Stability and Dynamics. 2022, doi: 10.1142/S0219455423500190
    [31] 王迎光, 谭家华. 一强非线性随机振荡系统的路径积分解. 振动与冲击, 2007, 26(11): 153-155, 162 (Wang Yingguang, Tan Jiahua. Path integral solution of a strongly nonlinear stochastic oscillation system. Journal of Vibration and Shock, 2007, 26(11): 153-155, 162 (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.11.034
    [32] 郝颖, 吴志强. 三稳态Van der Pol-Duffing振子的随机P分岔. 力学学报, 2013, 45(2): 257-264 (Hao Ying, Wu Zhiqiang. Stochastic P-bifurcation of tri-stable Van der Pol-Duffing oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 257-264 (in Chinese) doi: 10.6052/0459-1879-12-169
  • 加载中
图(8)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  222
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 录用日期:  2022-10-08
  • 网络出版日期:  2022-10-09
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回