[1] |
朱位秋, 蔡国强. 随机动力学引论. 北京: 科学出版社, 2017Zhu Weiqiu, Cai Guoqiang. Introduction to Stochastic Dynamics. Beijing: Science Press, 2017 (in Chinese))
|
[2] |
徐伟. 非线性随机动力学的若干数值方法及应用. 北京: 科学出版社, 2013Xu Wei. Numerical Analysis Methods for Stochastic Dynamical System. Beijing: Science Press, 2013 (in Chinese)
|
[3] |
Li J, Chen JB. Stochastic Dynamics of Structures. John Wiley & Sons, 2009
|
[4] |
Sun JQ. Stochastic Dynamics and Control. Elsevier, 2006
|
[5] |
Zhu WQ, Cai GQ. Nonlinear stochastic dynamics: A survey of recent developments. Acta Mechanica Sinica, 2002, 18(6): 551-566 doi: 10.1007/BF02487958
|
[6] |
Dubkov AA, Kharcheva AA. Steady-state probability characteristics of Verhulst and Hongler models with multiplicative white Poisson noise. The European Physical Journal B, 2019, 92(10): 222-227 doi: 10.1140/epjb/e2019-100020-1
|
[7] |
Jia WT, Zhu WQ, Xu Y. Stochastic averaging of quasi partially integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. International Journal of Non-Linear Mechanics, 2017, 93(1): 82-95
|
[8] |
Pan SS, Zhu WQ. Dynamics of a prey-predator system under Poisson white noise excitation. Acta Mechanica Sinica, 2014, 30(5): 739-745 doi: 10.1007/s10409-014-0069-y
|
[9] |
Zhu HT. Probabilistic solution of some multi-degree-of-freedom nonlinear systems under external independent Poisson white noises. The Journal of the Acoustical Society of America, 2012, 131(6): 4550-4557 doi: 10.1121/1.4714766
|
[10] |
Wu Y, Zhu WQ. Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises. Physics Letters A, 2008, 372(5): 623-630 doi: 10.1016/j.physleta.2007.07.083
|
[11] |
Muscolino G, Ricciardi G, Cacciola P. Monte Carlo simulation in the stochastic analysis of non-linear systems under external stationary Poisson white noise input. International Journal of Non-Linear Mechanics, 2003, 38(8): 1269-1283 doi: 10.1016/S0020-7462(02)00072-0
|
[12] |
Grigoriu M. Stochastic Calculus: Applications in Science and Engineering. Springer, 2002
|
[13] |
Ren ZC, Xu W. An improved path integration method for nonlinear systems under Poisson white noise excitation. Applied Mathematics and Computation, 2020, 373(5): 125036-125049
|
[14] |
Lyu MZ, Chen JB, Pirrotta A. A novel method based on augmented Markov vector process for the time-variant extreme value distribution of stochastic dynamical systems enforced by Poisson white noise. Communications in Nonlinear Science and Numerical Simulation, 2020, 80(1): 104974-104989
|
[15] |
Di Matteo A, Di Paola M, Pirrotta A. Path integral solution for nonlinear systems under parametric Poissonian white noise input. Probabilistic Engineering Mechanics, 2016, 44(4): 89-98
|
[16] |
Yue XL, Xu W, Xu Y, et al. Non-stationary response of MDOF dynamical systems under combined Gaussian and Poisson white noises by the generalized cell mapping method. Probabilistic Engineering Mechanics, 2019, 55(1): 102-108
|
[17] |
岳晓乐, 徐伟, 张莹等. 加性和乘性泊松白噪声联合激励下光滑非连续振子的随机响应. 物理学报, 2014, 63(6): 82-87 (Yue Xiaole, Xu Wei, Zhang Ying, et al. Stochastic responses of smooth discontinuous oscillator under additive and multiplicative Poisson white noise excitation. Acta Physica Sinica, 2014, 63(6): 82-87 (in Chinese) doi: 10.7498/aps.63.060502
|
[18] |
Han HG, Ma ML, Qiao JF. Accelerated gradient algorithm for RBF neural network. Neurocomputing, 2021, 441(6): 237-247
|
[19] |
Krzyżak A, Niemann H. Convergence properties of radial basis functions networks in function learning. Procedia Computer Science, 2021, 192: 3761-3767 doi: 10.1016/j.procs.2021.09.150
|
[20] |
Hao GC, Guo J, Zhang W, et al. High-precision chaotic radial basis function neural network model: Data forecasting for the earth electromagnetic signal before a strong earthquake. Geoscience Frontiers, 2022, 13(1): 101315-101324 doi: 10.1016/j.gsf.2021.101315
|
[21] |
李韶华, 王桂洋, 杨泽坤等. 基于DRBF-EKF算法的车辆质心侧偏角与路面附着系数动态联合估计. 力学学报. 2022, 54(7): 1853-1865Li Shaohua, Wang Guiyang, Yang Zekun, et al. Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1853-1865. (in Chinese))
|
[22] |
Jiang QH, Zhu LL, Shu C, et al. Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow. Acta Mechanica Sinica, 2021, 37(12): 1757-1772 doi: 10.1007/s10409-021-01144-5
|
[23] |
Pesce V, Silvestrini S, Lavagna M. Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation. Aerospace Science and Technology, 2020, 96(1): 105527-105536
|
[24] |
Chen H, Kong L, Leng WJ. Numerical solution of PDEs via integrated radial basis function networks with adaptive training algorithm. Applied Soft Computing, 2011, 11(1): 855-860 doi: 10.1016/j.asoc.2010.01.005
|
[25] |
Mai-Duy N, Tanner RI. Solving high-order partial differential equations with indirect radial basis function networks. International Journal for Numerical Methods in Engineering, 2005, 63(11): 1636-1654 doi: 10.1002/nme.1332
|
[26] |
Li JY, Luo SW, Qi YJ, et al. Numerical solution of elliptic partial differential equation using radial basis function neural networks. Neural Networks, 2003, 16(5): 729-734
|
[27] |
Wang X, Jiang J, Hong L, et al. Random vibration analysis with radial basis function neural networks. International Journal of Dynamics and Control, 2021, doi: 10.1007/s40435-021-00893-2
|
[28] |
Wang X, Jiang J, Hong L, et al. First-passage problem in random vibrations with radial basis function neural networks. Journal of Vibration and Acoustics, 2022, 144(5): 051014-051026 doi: 10.1115/1.4054437
|
[29] |
Nelles O. Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes. Spring, 2020
|
[30] |
Ye WW, Chen LC, Qian JM, et al. RBFNN for calculating the stationary response of SDOF nonlinear systems excited by Poisson white noise. International Journal of Structural Stability and Dynamics. 2022, doi: 10.1142/S0219455423500190
|
[31] |
王迎光, 谭家华. 一强非线性随机振荡系统的路径积分解. 振动与冲击, 2007, 26(11): 153-155, 162 (Wang Yingguang, Tan Jiahua. Path integral solution of a strongly nonlinear stochastic oscillation system. Journal of Vibration and Shock, 2007, 26(11): 153-155, 162 (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.11.034
|
[32] |
郝颖, 吴志强. 三稳态Van der Pol-Duffing振子的随机P分岔. 力学学报, 2013, 45(2): 257-264 (Hao Ying, Wu Zhiqiang. Stochastic P-bifurcation of tri-stable Van der Pol-Duffing oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 257-264 (in Chinese) doi: 10.6052/0459-1879-12-169
|