EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望

张鑫 王勋年

张鑫, 王勋年. 正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望. 力学学报, 2022, 54(12): 1-14 doi: 10.6052/0459-1879-22-377
引用本文: 张鑫, 王勋年. 正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望. 力学学报, 2022, 54(12): 1-14 doi: 10.6052/0459-1879-22-377
Zhang Xin, Wang Xunnian. Research progress and outlook of flow field created by dielectric barrier discharge plasma actuators driven by a sinusoidal alternating current high-voltage power. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 1-14 doi: 10.6052/0459-1879-22-377
Citation: Zhang Xin, Wang Xunnian. Research progress and outlook of flow field created by dielectric barrier discharge plasma actuators driven by a sinusoidal alternating current high-voltage power. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 1-14 doi: 10.6052/0459-1879-22-377

正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望

doi: 10.6052/0459-1879-22-377
基金项目: 国家自然科学基金(11902336)和四川省科技计划(2022JDJQ0022)资助项目
详细信息
    作者简介:

    王勋年, 研究员, 主要研究方向: 流动控制技术研究. E-mail: xunnian@sohu.com

  • 中图分类号: V211.A

RESEARCH PROGRESS AND OUTLOOK OF FLOW FIELD CREATED BY DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS DRIVEN BY A SINUSOIDAL ALTERNATING CURRENT HIGH-VOLTAGE POWER

  • 摘要: 正弦交流介质阻挡放电等离子体流动控制技术是基于等离子体激励的主动流动控制技术, 具有响应时间短、结构简单、能耗低、不需要额外气源装置等优点, 在飞行器增升减阻、抑振降噪、助燃防冰等方面具有广阔的应用前景. 针对“激励器消耗的大部分能量尚未被挖掘利用、诱导流场的完整演化过程尚未完全掌握、诱导流场的演化机制尚不明确”这三方面问题, 本文首先从激励器诱导流场的空间结构、时空演化过程、演化机制三个方面回顾总结了激励器诱导流场的研究进展. 在诱导流场空间结构方面, 发现了高电压激励下诱导射流的湍流特性, 辨析了壁面拟序结构与无量纲激励参数之间的关联机制; 从激励器诱导声能方面挖掘出了激励器潜在的能量, 发现了“等离子体诱导超声波与诱导声流”的新现象, 提出了声激励机制; 在时空演化过程方面, 阐明了激励器诱导流场从薄型壁射流发展为“拱形”射流、再演变为启动涡, 最终形成准定常射流的完整演化过程; 在演化机制方面, 结合声学特性提出了以“升推”为主的诱导流场演化机制. 其次, 围绕激励器诱导流场, 进一步凝练出下一步研究重点, 为突破等离子体流动控制技术瓶颈, 打通“概念创新—技术突破—演示验证”的创新链路, 实现工程应用提供支撑.

     

  • 图  1  典型的等离子体激励器布局示意图

    Figure  1.  The typical configuration of DBD plasma actuators

    图  2  等离子体激励器的电压电流特性[57]

    Figure  2.  The characteristics of sinusoidal waveform and the currents[57]

    图  3  等离子体放电图像[67]

    Figure  3.  Plasma discharge images[67]

    图  4  激励器诱导射流的无量纲速度剖面

    Figure  4.  Non-dimensional velocity profiles of wall jet produced by DBD plasma actuators

    图  5  激励器诱导瞬态流场的PIV原始图

    Figure  5.  Original PIV images of the instantaneous flow field generated by DBD plasma actuators

    图  6  激励器诱导射流的瞬态旋涡强度分布

    Figure  6.  The swirling strength distribution of the instantaneous flow field generated by DBD plasma actuators

    图  7  计算点的弦向位置

    Figure  7.  The chord-wise positions of the calculation points

    图  8  不同弦向位置的法向脉动速度功率谱

    Figure  8.  Power spectra of the vertical fluctuating velocity at different chord-wise locations

    图  9  不同动量系数下的法向脉动速度功率谱

    Figure  9.  Spectra of the vertical fluctuating velocity component at different momentum coefficients

    图  10  一个周期T内旋涡强度的演化过程

    Figure  10.  Evolution of swirling strength in one cycle

    图  11  不同动量系数下的无量纲斯特劳哈尔数

    Figure  11.  Variation of the Strouhal number with momentum coefficient

    图  12  激励器诱导压力的功率谱

    Figure  12.  Power spectral density (PSD) analysis of the pressure value with a frequency of f = 5 kHz

    图  13  激励器诱导超声波的纹影图

    Figure  13.  Schlieren visualization image of the induced propagating pressure waves

    图  14  启动涡阶段的诱导超声波

    Figure  14.  The induced propagating ultrasound at the starting vortex stage

    图  15  射流阶段的诱导超声波

    Figure  15.  The induced propagating ultrasound at the wall jet stage

    图  16  无量纲电压波形、电流与压力

    Figure  16.  Normalized sinusoidal high-voltage waveform, current, and pressure over time

    图  17  非定常交流电压波形及电流

    Figure  17.  Unsteady sinusoidal AC waveforms and the current

    图  18  有无残余电荷时诱导压力波的峰值压力

    Figure  18.  The peak pressure of the induced pressure wave without and with the residual charge

    图  19  非定常交流电压激励下的诱导流场

    Figure  19.  Flow field produced by the plasma actuator driven by the unsteady sinusoidal AC waveforms

    图  20  不同相位下的法向速度分布

    Figure  20.  Distribution of the induced y-axis velocity component for different phase angles

    图  21  诱导声流实验的设备总体布局示意图 (单位: mm)

    Figure  21.  Schematic of the experimental set-up for the overall system (unit: mm)

    图  22  纯水中的诱导声流

    Figure  22.  The induced acoustic streaming flow in distilled water

    图  23  激励器诱导流场的演化过程

    Figure  23.  Schematic of flow field induced by a single AC-DBD plasma actuator versus voltage waveform

    图  24  等离子体激励器在第一个正弦激励周期内产生的典型流场结构

    Figure  24.  The instantaneous flow field induced by the plasma actuator in the first cycle

    图  25  不同时刻的激励器诱导流场

    Figure  25.  The instantaneous flow field induced by the plasma actuator at different stages

    图  26  激励器诱导的相位平均流场

    Figure  26.  Phase-averaged velocity fields produced by the plasma actuator

    图  27  激励器诱导流场的演化机制

    Figure  27.  Evolution mechanism of the flow field generated by plasma actuators

  • [1] 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望. 中国科学: 技术科学, 2020, 50: 1252-1273 (Li Yinghong, Wu Yun. Research progress and outlook of flow control and combustion control using plasma actuation. Scientia Sinica Technologica, 2020, 50: 1252-1273 (in Chinese) doi: 10.1360/SST-2020-0111
    [2] 王帅杰, 崔晓通, 白建侠等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报, 2019, 51(3): 767-774 (Wang Shuaijie, Cui Xiaotong, Bai Jianxia, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 767-774 (in Chinese)
    [3] 左伟, 顾蕴松, 程克明等. 斜出口合成射流控制机翼分离流实验研究. 实验流体力学, 2014, 28(6): 45-50 (Zuo Wei, Gu Yunsong, Cheng Keming, et al. An experimental investigation on separation control of airfoil by beveled-slit synthetic-jet actuator. Journal of Experiments in Fluid Mechanics, 2014, 28(6): 45-50 (in Chinese)
    [4] 姚张奕, 史志伟, 董益章. 深度强化学习在翼型分离流动控制中的应用. 实验流体力学, 2022, 36(3): 55-64 (Yao Zhangyi, Shi Zhiwei, Dong Yizhang. Deep reinforcement learning for the control of airfoil flow separation. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55-64 (in Chinese) doi: 10.11729/syltlx20210085
    [5] 赵志杰, 罗振兵, 刘杰夫等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验. 力学学报, 2022, 54(5): 1220-1228 (Zhao Zhijie, Luo Zhenbing, Liu Jiefu, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220-1228 (in Chinese) doi: 10.6052/0459-1879-21-586
    [6] 余柏杨, 吕宏强, 周岩等. 基于机器学习的高速复杂流场流动控制效果预测分析. 实验流体力学, 2022, 36(3): 44-54 (Yu Baiyang, Lyu Hongqiang, Zhou Yan, et al. Predictive analysis of flow control in high-speed complex flow field based on machine learning. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 44-54 (in Chinese) doi: 10.11729/syltlx20210168
    [7] 陈国孝, 刘喆, 邵传平. 旋转振荡板尾流的控制研究. 力学学报, 2021, 53(7): 1856-1875 (Chen Guoxiao, Liu Zhe, Shao Chuanping. Investigations on the control of wakes downstream of a rotary oscillating plate. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1856-1875 (in Chinese)
    [8] 许登科, 董旭, 徐瑞泽等. 压气机流动稳定性自适应控制方法研究进展. 力学学报, 2022, 54(3): 559-576 (Xu Dengke, Dong Xu, Xu Ruize, et al. Research progress of adaptive control methods for compressor flow stability. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 559-576 (in Chinese)
    [9] 巩绪安, 张鑫, 马兴宇等. 柔性锯齿形尾缘流动分离控制实验的多尺度相干结构研究. 实验流体力学, 2022, 36: 1-9 (Gong Xu’an, Zhang Xin, Ma Xingyu, et al. Experimental study on flow separation control by flexible serrated trailing edge based on multi-scale coherent structure analysis. Journal of Experiments in Fluid Mechanics, 2022, 36: 1-9 (in Chinese)
    [10] 陈耀慧, 栗保明, 潘绪超等. 电磁力控制翼型绕流分离的增升减阻效率研究. 力学学报, 2015, 47(3): 414-421 (Chen Yaohui, Li Baoming, Pan Xuchao, et al. Research of the control efficiency of lift increase and drag reduction base on flow around hydrofoil controlled by Lorentz force. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 414-421 (in Chinese)
    [11] 赵国庆, 招启军, 顾蕴松等. 合成射流对失速状态下翼型大分离流动控制的试验研究. 力学学报, 2015, 47(2): 351-355 (Zhao Guoqing, Zhao Qijun, Gu Yunsong, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351-355 (in Chinese) doi: 10.6052/0459-1879-14-134
    [12] 陈耀慧, 陈志华, 范宝春等. 低雷诺数翼型绕流的电磁控制. 空气动力学学报, 2007, 25(6): 91-96 (Chen Yaohui, Chen Zhihua, Fan Baochun, et al. Electro-magnetic control of the flow past a foil at a low Reynolds number. Acta Aerodynamica Sinica, 2007, 25(6): 91-96 (in Chinese)
    [13] 刘强, 刘周, 白鹏等. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究. 力学学报, 2016, 48(2): 269-277 (Liu Qiang, Liu Zhou, Bai Peng, et al. Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 269-277 (in Chinese) doi: 10.6052/0459-1879-15-188
    [14] 杨鹤森, 赵光银, 梁华. 翼型动态失速影响因素及流动控制研究进展. 航空学报, 2020, 41: 023605 (Yang Hesen, Zhao Guangyin, Liang Hua. Research progress and influence factors of airfoil dynamic stall flow control. Acta Aeronautica et Astronautica Sinica, 2020, 41: 023605 (in Chinese)
    [15] 周岩, 刘冰, 王林等. 两电极等离子体合成射流性能及出口构型影响仿真研究. 空气动力学学报, 2015, 33(6): 799-805 (Zhou Yan, Liu Bing, Wang Lin, et al. Numerical simulation of performance characteristics of two-electrode plasma synthetic jet and the influence of different actuator orifice shapes. Acta Aerodynamica Sinica, 2015, 33(6): 799-805 (in Chinese) doi: 10.7638/kqdlxxb-2014.0037
    [16] Hui WW, Zhang HX, Wang JL, et al. Heat transfer characteristics of plasma actuation in different boundary-layer flows. Physics of Fluids, 2022, 34: 034110 doi: 10.1063/5.0084420
    [17] Zong HH, van Pelt T, Kotsonis M. Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number. Experiments in Fluids, 2018, 59: 169 doi: 10.1007/s00348-018-2624-y
    [18] Cheng XQ, Wong CW, Hussain F, et al. Flat plate drag reduction using plasma-generated streamwise vortices. Journal of Fluid Mechanics, 2021, 918(24): 1-37
    [19] Wu B, Gao C, Liu F, et al. Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula. Plasma Science and Technology, 2019, 21(4): 045501
    [20] 阳鹏宇, 张鑫, 赖庆仁等. 机翼尺度效应对等离子体分离流动控制特性的影响. 力学学报, 2021, 53(12): 3321-3330 (Yang Pengyu, Zhang Xin, Lai Qingren, et al. Experimental investigation of the influence of scaling effects of wings on the flow separation control using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3321-3330 (in Chinese)
    [21] 张卫国, 史喆羽, 李国强等. 风力机翼型动态失速等离子体流动控制数值研究. 力学学报, 2020, 52(6): 1678-1689 (Zhang Weiguo, Shi Zheyu, Li Guoqiang, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689 (in Chinese)
    [22] 黄广靖, 戴玉婷, 杨超. 低雷诺数俯仰振荡翼型等离子体流动控制. 力学学报, 2021, 53(1): 136-155 (Huang Guangjing, Dai Yuting, Yang Chao. Plasma-based flow control on pitching airfoil at low Reynolds number. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155 (in Chinese)
    [23] 梁华, 李应红, 程邦勤. 等离子体气动激励抑制翼型失速分离的仿真研究. 航空动力学报, 2008, 23(5): 777-783 (Liang Hua, Li Yinghong, Cheng Bangqin. Numerical simulation on airfoil stall separation suppression by plasma aerodynamic actuation. Journal of Aerospace Power, 2008, 23(5): 777-783 (in Chinese)
    [24] Wu Z, Wong CW, Wang L, et al. A rapidly settled closed-loop control for airfoil aerodynamics based on plasma actuation. Experiments in Fluids, 2015, 56: 1-15 doi: 10.1007/s00348-014-1876-4
    [25] 杜海, 史志伟, 程克明. 纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析. 航空学报, 2016, 37(7): 2102-2111 (Du Hai, Shi Zhiwei, Cheng Keming. Frequency optimization and vortex dynamic process analysis of separated flow control by nanosecond pulsed plasma dischage. Acta Aeronoutica et Astronautica Sinica, 2016, 37(7): 2102-2111 (in Chinese)
    [26] 郝琳召, 张彬乾, 陈真利. 纳秒等离子体激励控制翼型流动分离机理研究. 航空工程进展, 2014, 5(1): 25-32 (Hao Linzhao, Zhang Binqian, Chen Zhenli. Investigation on mechanisms of separation control over an airfoil using nanosecond pulsed plasma actuator. Advances in Aeronautical Science and Engineering, 2014, 5(1): 25-32 (in Chinese)
    [27] Meng XS, Long YX, Wang JL, et al. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators. Physics of Fluids, 2018, 30(2): 024101
    [28] 魏彪, 梁华, 牛中国等. 三角翼微秒脉冲等离子体流动控制的试验研究. 高电压技术, 2016, 42(3): 782-789 (Wei Biao, Liang Hua, Niu Zhongguo, et al. Experimental investigation of delta-wing flow control by microsecond pulse plasma actuator. High Voltage Engineering, 2016, 42(3): 782-789 (in Chinese) doi: 10.13336/j.1003-6520.hve.20160308013
    [29] 牛中国, 赵光银, 梁华. 三角翼DBD 等离子体流动控制研究进展. 航空学报, 2018, 40: 122201 ((Niu Zhongguo, Zhao Guangyin, Liang Hua. A review of studies of vortical flow control over delta wings using DBD plasma actuation. Acta Aeronautica et Astronautica Sinica, 2018, 40: 122201 (in Chinese)
    [30] 王健磊, 李华星, 孟宣市. 大迎角分离流场在等离子体控制下的特性研究. 实验流体力学, 2010, 24(2): 34-38 (Wang Jianlei, Li Huaxing, Meng Xuanshi. Study on the characteristics of fore-body separate flow at high angle of attack under plasma control. Journal of Experiments in Fluid Mechanics, 2010, 24(2): 34-38 (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.02.008
    [31] 何伟, 牛中国, 潘波等. 等离子抑制翼尖涡实验研究. 工程力学, 2013, 30(5): 277-281 ((He Wei, Niu Zhongguo, Pan Bo, et al. Study on experiments for suppressing wingtip vortices with plasma. Engineering Mechanics, 2013, 30(5): 277-281 (in Chinese)
    [32] 冯立好, 王晋军, Choi KS. 等离子体环量控制翼型增升的实验研究. 力学学报, 2013, 45(6): 815-821 (Feng Lihao, Wang Jinjun, Choi KS. Experimental investigation on lift increment of a plasma circulation control airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 815-821 (in Chinese) doi: 10.6052/0459-1879-13-012
    [33] Zhang PF, Yan B, Liu AB, et al. Numerical simulation on plasma circulation control airfoil. AIAA Journal, 2012, 48(10): 2213-2226
    [34] 聂万胜, 周思引, 车学科. 纳秒脉冲放电等离子体助燃技术研究进展. 高电压技术, 2017, 43(6): 1749-1758 (Nie Wansheng, Zhou Siyin, Che Xueke. Review of plasma assisted combustion technology by nanosecond pulsed discharge. High Voltage Engineering, 2017, 43(6): 1749-1758 (in Chinese) doi: 10.13336/j.1003-6520.hve.20170527001
    [35] 孟宣市, 惠伟伟, 易贤等. AC-SDBD等离子体激励防/除冰研究现状与展望. 空气动力学学报, 2022, 40(2): 31-49 (Meng Xuanshi, Hui Weiwei, Yi Xian, et al. Anti-/De-icing by AC-SDBD plasma actuators: status and outlook. Acta Aerodynamica Sinica, 2022, 40(2): 31-49 (in Chinese) doi: 10.7638/kqdlxxb-2021.0159
    [36] Cai JS, Tian YQ, Meng XS, et al. An experimental study of icing control using DBD plasma actuator. Experiments in Fluids, 2017, 58(8): 1-8
    [37] Zhou WW, Liu Y, Hu H, et al. Utilization of thermal effect induced by plasma generation for aircraft icing mitigation. AIAA Journal, 2018, 56(3): 1097-1104 doi: 10.2514/1.J056358
    [38] Hu HY, Meng XS, Cai JS, et al. Optimization of dielectric barrier discharge plasma actuators for icing control. Journal of Aircraft, 2020, 57(2): 383-387 doi: 10.2514/1.C035697
    [39] Li Y, Zhang X, Huang X. The use of plasma actuators for bluff body broadband noise control. Experiments in Fluids, 2010, 49: 367-377 doi: 10.1007/s00348-009-0806-3
    [40] Corke TC, Enloe CL, Wilkinson SP. Dielectric barrier discharge plasma actuators for flow control. Annual Review of Fluid Mechanics, 2010, 42: 505-529 doi: 10.1146/annurev-fluid-121108-145550
    [41] Leono SB, Firsov AA, Yarantsev DA. Active steering of shock waves in compression ramp by non-uniform plasma//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2010: 1-11
    [42] Roupassov DV, Nikipelov AA, Nudnova MM. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA Journal, 2009, 47(1): 168-185 doi: 10.2514/1.38113
    [43] Erfani R, Erfani T, Utyuzhnikov SV. Optimisation of multiple encapsulated electrode plasma actuator. Aerospace Science and Technology, 2012, 109: 1-8
    [44] Labergue L, Leger L, Moreau E, et al. Effect of a plasma actuator on an airflow along an inclined wall: PIV and wall pressure measurements. Journal of Electrostatics, 2005, 63(6): 961-967
    [45] Grundmann S, Tropea C. Experimental transition delay using glow-discharge plasma actuators. Experiments in Fluids, 2007, 42(4): 653-657 doi: 10.1007/s00348-007-0256-8
    [46] 吴云, 李应红. 等离子体流动控制研究进展与展望. 航空学报, 2015, 36(2): 381-405 (Wu Yun, Li Yinghong. Progress and outlook of plasma flow control. Acta Aeronoutica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese)
    [47] 罗振兵, 夏智勋, 邓雄等. 合成双射流及其流动控制技术研究进展. 空气动力学报, 2017, 35(2): 252-264 (Luo Zhenbin, Xia Zhixun, Deng Xiong, et al. Research progress of dual synthetic jets and its flow control technology. Acta Aerodynamica Sinica, 2017, 35(2): 252-264 (in Chinese)
    [48] 聂万胜, 程钰锋, 车学科. 纳秒脉冲放电等离子体助燃技术研究进展. 力学进展, 2012, 42(6): 722-734 (Nie Wansheng, Cheng Yufeng, Che Xueke. A review on dielectric barrier discharge plasma flow control. Advances in Mechanics, 2012, 42(6): 722-734 (in Chinese)
    [49] Wang JJ, Choi KS, Feng LH, et al. Recent developments in DBD plasma flow control. Progress in Aerospace Sciences, 2013, 62: 52-78 doi: 10.1016/j.paerosci.2013.05.003
    [50] 史志伟, 杜海, 李铮等. 等离子体流动控制技术原理及典型应用. 高压电器, 2017, 53(4): 72-78 (Shi Zhiwei, Du Hai, Li Zheng, et al. Mechanism and application of plasma flow control technology. High Voltage Apparatus, 2017, 53(4): 72-78 (in Chinese) doi: 10.13296/j.1001-1609.hva.2017.04.013
    [51] 孟宣市, 宋科, 龙玥霄等. NS-SDBD等离子体流动控制研究现状与展望. 空气动力学学报, 2018, 36(6): 901-916 (Meng Xuanshi, Song Ke, Long Yuexiao, et al. Airflow control by NS-SDBD plasma actuators. Acta Aerodynamica Sinica, 2018, 36(6): 901-916 (in Chinese)
    [52] Yu JY, Wang Z, Chen F. Kriging surrogate model applied in the mechanism study of tip leakage flow control in turbine cascade by multiple DBD plasma actuators. Aerospace Science and Technology, 2019, 85: 216-228 doi: 10.1016/j.ast.2018.11.055
    [53] 林麒, 黄印阳, 潘波等. 新型等离子体主动流动控制器及其诱导流场研究. 空气动力学学报, 2011, 32(1): 312-317 (Lin Qi, Huang Yinyang, Pan Bo, et al. Investigation on new-style plasma active flow controllers and its induced flow field. Acta Aerodynamica Sinica, 2011, 32(1): 312-317 (in Chinese)
    [54] Wang ZW, Hu XJ, Mao JM, et al. Study on vehicle drag reduction simulation based on Suzen–Huang model. Physics of Plasmas, 2021, 28: 063512 doi: 10.1063/5.0050374
    [55] 李钢, 黄卫兵, 朱俊强等. 平板附面层等离子体流动控制的数值模拟. 航空动力学报, 2009, 39(11): 1843-8149 (Li Gang, Huang Weibing, Zhu Junqiang, et al. Numerical simulation of flat plate plasma flow control. Journal of Aerospace Power, 2009, 39(11): 1843-8149 (in Chinese) doi: 10.13224/j.cnki.jasp.2007.12.021
    [56] 张鑫, 黄勇, 李华星. 等离子体激励器控制圆柱绕流的实验研究. 力学学报, 2018, 50(6): 1396-1405 (Zhang Xin, Huang Yong, Li Huaxing. Flow control over a circular cylinder using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1396-1405 (in Chinese) doi: 10.6052/0459-1879-18-279
    [57] Benard N, Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Experiments in Fluids, 2014, 55: 1846 doi: 10.1007/s00348-014-1846-x
    [58] 车学科, 聂万胜, 侯志勇等. 地面实验模拟高空等离子体流动控制效果. 航空学报, 2015, 36(2): 441-448 (Che Xueke, Nie Wansheng, Hou Zhiyong, et al. High altitude plasma flow control simulation through ground experiment. Acta Aeronoutica et Astronautica Sinica, 2015, 36(2): 441-448 (in Chinese)
    [59] Zhang HD, Wu Y, Li YH, et al. Control of compressor tip leakage flow using plasma actuation. Aerospace Science and Technology, 2019, 86: 244-255 doi: 10.1016/j.ast.2019.01.009
    [60] 王斌, 李华星. 等离子体对流动湍动能的控制. 航空学报, 2015, 36(12): 3809-3821 (Wang Bin, Li Huaxing. Control of flow turbulent kinetic energy by plasma. Acta Aeronoutica et Astronautica Sinica, 2015, 36(12): 3809-3821 (in Chinese)
    [61] 李文丰, 蔡晋生, 郝江南. 双极性等离子体激励器圆柱绕流控制实验研究. 实验流体力学, 2013, 27(3): 17-22 (Li Wenfeng, Cai Jinsheng, Hao Jiangnan. Flow control on a circular using multi-bipolar plasma actuator. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 17-22 (in Chinese) doi: 10.3969/j.issn.1672-9897.2013.03.004
    [62] 赵光银, 李应红, 梁华等. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101-015112 (Zhao Guangyin, Li Yinghong, Liang Hua, et al. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101-015112 (in Chinese) doi: 10.7498/aps.64.015101
    [63] 朱益飞, 吴云, 崔巍. 大气压空气纳秒脉冲等离子体气动激励特性数值模拟与实验验证. 航空学报, 2013, 34(9): 2081-2091 (Zhu Yifei, Wu Yun, Cui Wei. Numerical simulation and experimental validation of pulsed nanosecond plasma aerodynamic actuation in air under atmospheric pressure. Acta Aeronoutica et Astronautica Sinica, 2013, 34(9): 2081-2091 (in Chinese)
    [64] 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟. 航空学报, 2014, 35(3): 657-665 (Ni Fangyuan, Shi Zhiwei, Du Hai. Numerical simulation of nanosecond pulsed plasma actuator for cylindrical high-speed flow control. Acta Aeronoutica et Astronautica Sinica, 2014, 35(3): 657-665 (in Chinese)
    [65] 徐双艳, 李江, 蔡晋生, 王光秋. 二维对称结构纳秒脉冲介质阻挡放电数值模拟. 高电压技术, 2015, 41(6): 2100-2107 (Xu Shuangyan, Li Jiang, Cai Jinsheng, Wang Guangqiu. Modeling of the two-dimensional nanosecond sdbd discharge with symmetry electrodes. High Voltage Engineering, 2015, 41(6): 2100-2107 (in Chinese)
    [66] Zheng JG, Cui YD, Zhao ZJ, et al. Flow separation control over a naca 0015 airfoil using nanosecond-pulsed plasma actuator. AIAA Journal, 2018, 56(6): 2220-2234 doi: 10.2514/1.J056111
    [67] Benard N, Moreau E. Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Applied Physics Letters, 2012, 100: 193503 doi: 10.1063/1.4712125
    [68] 孟宣市, 杨泽人, 陈琦等. 低雷诺数下层流分离的等离子体控制. 航空学报, 2016, 37(7): 2112-2122 (Meng Xuanshi, Yang Zeren, Chen Qi, et al. Laminar separation control at low Reynolds numbers using plasma actuator. Acta Aeronoutica et Astronautica Sinica, 2016, 37(7): 2112-2122 (in Chinese)
    [69] 吴云, 张海灯, 于贤君等. 轴流压气机等离子体流动控制. 工程热物理学报, 2017, 38(7): 1396-1414 (Wu Yun, Zhang Haideng, Yu Xianjun, et al. Plasma flow control of axial compressor. Journal of Engineering Thermophysics, 2017, 38(7): 1396-1414 (in Chinese)
    [70] Su Z, Li J, Liang H, et al. UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge. Chinese Physics B, 2018, 27(10): 105205 doi: 10.1088/1674-1056/27/10/105205
    [71] Jukes TN, Choi KS, Johnson GA, et al. Turbulent boundary-layer control for drag reduction using surface plasma//2nd AIAA Flow Control Conference, Portland, 2004: 1-11
    [72] 张鑫, 黄勇, 阳鹏宇等. 等离子体激励器诱导射流的湍流特性研究. 力学学报, 2018, 50(4): 776-786 (Zhang Xin, Huang Yong, Yang Pengyu, et al. Investigation on the turbulent characteristics of the jet induced by a plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 776-786 (in Chinese) doi: 10.6052/0459-1879-17-392
    [73] Whalley RD, Choi KS. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma. Journal of Fluid Mechanics, 2013, 703: 192-203
    [74] Zhang X, Zong HH. Vortex shedding frequency scaling of coherent structures induced by a plasma actuator. AIAA Journal, 2021, 60(2): 1067-1076
    [75] Zhang X, Cui YD, Tay CMJ, et al. Ultrasound generated by alternating current dielectric barrier discharge plasma in quiescent air. Plasma Sources Science and Technology, 2020, 29: 015017 doi: 10.1088/1361-6595/ab5733
    [76] Neumann T, Ermert H. Schlieren visualization of ultrasonic wave fields with high spatial resolution. Ultrasonics, 2006, 44: 1561-1567
    [77] Zhang X, Cui YD, Tay CMJ, et al. The pressure wave induced by an asymmetrical Dielectric Barrier Discharge plasma actuator under the influence of residual charge. Aerospace Science and Technology, 2020, 99: 105751 doi: 10.1016/j.ast.2020.105751
    [78] Moudjed B, Botton V, Henry D, et al. Scaling and dimensional analysis of acoustic streaming jets. Physics of Fluids, 2014, 26: 093602 doi: 10.1063/1.4895518
    [79] Zhang X, Cui YD, Li HX. Acoustic streaming flow generated by surface dielectric barrier discharge in quiescent air. Physics of Fluids, 2021, 33: 057117 doi: 10.1063/5.0049420
    [80] Zhang X, Li HX, Qu F. Acoustic streaming in water induced by an asymmetric dielectric-barrier-discharge plasma actuator at the initiation stage. Physics of Fluids, 2021, 34: 017113
    [81] Zhang PF, Liu AB, Wang JJ. Flow structures in flat plate boundary layer induced by pulsed plasma actuator. Science China Technological Sciences, 2010, 53: 2772-2782 doi: 10.1007/s11431-010-4100-7
    [82] Feng LH, Jukes TN, Choi KS, et al. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Experiments in Fluids, 2012, 52(6): 1533-1546 doi: 10.1007/s00348-012-1263-y
    [83] 张鑫, 黄勇, 阳鹏宇. 等离子体无人机失速分离控制飞行实验. 航空学报, 2018, 39(2): 121587 (Zhang Xin, Huang Yong, Wang Xunnian. Flight testing of flow separation control using plasma actuator. Acta Aeronoutica et Astronautica Sinica, 2018, 39(2): 121587 (in Chinese)
    [84] Zhang X, Cui YD, Tay CMJ, et al. Flow field generated by a dielectric barrier discharge plasma actuator in quiescent air at initiation stage. Chinese Journal of Aeronautics, 2021, 34(3): 13-24 doi: 10.1016/j.cja.2020.08.013
    [85] Murphy JP, Kriegseis J, Lavoie P. Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry. Journal of Applied Physics, 2013, 113: 243301 doi: 10.1063/1.4811225
    [86] Debien A, Benard N, David L, et al. Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators, Applied Physics Letters, 2012, 100: 013901.
    [87] Zhang X, Qu F. Formation mechanism of wall jet generated by plasma actuators in quiescent air. AIAA Journal, 2022, 60(8): 4714-4724 doi: 10.2514/1.J061440
  • 加载中
图(27)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  65
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 录用日期:  2022-10-12
  • 网络出版日期:  2022-10-13

目录

    /

    返回文章
    返回