[1] |
Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components. Science, 2017, 358(6367): 1146
|
[2] |
Loyez M, Derosa MC, Caucheteur C, et al. Overview and emerging trends in optical fiber aptasensing. Biosensors & Bioelectronics, 2022, 196: 113694
|
[3] |
Shen L, Zhu YF, Mao FL, et al. Broadband low-frequency acoustic metamuffler. Physical Review Applied, 2021, 16(6): 064057 doi: 10.1103/PhysRevApplied.16.064057
|
[4] |
Chen AL, Wang Y, Wang YF, et al. Design of acoustic/elastic phase gradient metasurfaces: principles, functional elements, tunability, and coding. Applied Mechanics Reviews, 2022, 74(2): 020801-020836 doi: 10.1115/1.4054629
|
[5] |
Yu NF, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333-337 doi: 10.1126/science.1210713
|
[6] |
马天雪, 苏晓星, 董浩文等. 声光子晶体带隙特性与声光耦合作用研究综述. 力学学报, 2017, 49(4): 743-757 (Ma Tianxue, Su Xiaoxing, Dong Haowen, et al. Review of bandgap characteristics and acousto-optical coupling in phoxonic crystals. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 743-757 (in Chinese) doi: 10.6052/0459-1879-17-130
|
[7] |
Assouar B, Liang B, Wu Y, et al. Acoustic metasurfaces. Nature Reviews Materials, 2018, 3(12): 460-472 doi: 10.1038/s41578-018-0061-4
|
[8] |
Hu YB, Zhang YH, Su GY, et al. Realization of ultrathin waveguides by elastic metagratings. Communications Physics, 2022, 5(1): 1-10 doi: 10.1038/s42005-021-00784-0
|
[9] |
任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019, 51(3): 656-687 (Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687 (in Chinese)
|
[10] |
Liu F, Shi PT, Xu YL, et al. Total reflection of flexural waves by circular meta-slab and its application in vibration isolation. International Journal of Mechanical Sciences, 2021, 212: 106806 doi: 10.1016/j.ijmecsci.2021.106806
|
[11] |
Zhang J, Zhang XB, Zhang H, et al. Rainbow zigzag metamaterial beams as broadband vibration isolators for beam-like structures. Journal of Sound and Vibration, 2022, 530: 116945 doi: 10.1016/j.jsv.2022.116945
|
[12] |
Ma TX, Fan QS, Zhang CZ, et al. Flexural wave energy harvesting by the topological interface state of a phononic crystal beam. Extreme Mechanics Letters, 2022, 50: 101578 doi: 10.1016/j.eml.2021.101578
|
[13] |
Alshaqaq M, Erturk A. Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting. Smart Materials and Structures, 2021, 30(1): 015029 doi: 10.1088/1361-665X/abc7fa
|
[14] |
De Ponti JM, Colombi A, Ardito R, et al. Graded elastic metasurface for enhanced energy harvesting. New Journal of Physics, 2020, 22(1): 013013 doi: 10.1088/1367-2630/ab6062
|
[15] |
王芳隆, 沈一舟, 徐艳龙等. 弯曲波彩虹捕获效应及其在能量俘获中的应用. 力学学报, 2022, 54(10): 1-13 (Wang Fanglong, Shen Yizhou, Xu Yanlong, et al. Rainbow trapping of flexural waves and its application in energy havesting. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 1-13 (in Chinese)
|
[16] |
Zareei A, Darabi A, Leamy MJ, et al. Continuous profile flexural GRIN lens: Focusing and harvesting flexural waves. Applied Physics Letters, 2018, 112(2): 023901 doi: 10.1063/1.5008576
|
[17] |
Yan X, Zhu R, Huang G, et al. Focusing guided waves using surface bonded elastic metamaterials. Applied Physics Letters, 2013, 103(12): 121901 doi: 10.1063/1.4821258
|
[18] |
Yi K, Collet M, Ichchou M, et al. Flexural waves focusing through shunted piezoelectric patches. Smart Materials and Structures, 2016, 25(7): 075007 doi: 10.1088/0964-1726/25/7/075007
|
[19] |
Tol S, Degertekin FL, Erturk A. Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting. Applied Physics Letters, 2017, 111(1): 013503 doi: 10.1063/1.4991684
|
[20] |
Shen YZ, Xu YL, Liu F, et al. 3 D-printed meta-slab for focusing flexural waves in broadband. Extreme Mechanics Letters, 2021, 48: 101410 doi: 10.1016/j.eml.2021.101410
|
[21] |
Zhang J, Zhang XB, Xu FL, et al. Vibration control of flexural waves in thin plates by 3D-printed metasurfaces. Journal of Sound and Vibration, 2020, 481: 115440 doi: 10.1016/j.jsv.2020.115440
|
[22] |
Liu F, Yang ZC, Shi PT, et al. Refraction of flexural waves by ultra-broadband achromatic meta-slab with wavelength-dependent phase shifts. Journal of Applied Mechanics-Transactions of the Asme, 2022, 89(4): 041003 doi: 10.1115/1.4053201
|
[23] |
Zhang J, Su X, Liu Y, et al. Metasurface constituted by thin composite beams to steer flexural waves in thin plates. International Journal of Solids and Structures, 2019, 162: 14-20 doi: 10.1016/j.ijsolstr.2018.11.025
|
[24] |
Cao LY, Yang ZC, Xu YL, et al. Deflecting flexural wave with high transmission by using pillared elastic metasurface. Smart Materials and Structures, 2018, 27(7): 075051 doi: 10.1088/1361-665X/aaca51
|
[25] |
Xu Y, Cao LY, Yang Z. Deflecting incident flexural waves by nonresonant single-phase meta-slab with subunits of graded thicknesses. Journal of Sound and Vibration, 2019, 454: 51-62 doi: 10.1016/j.jsv.2019.04.028
|
[26] |
Cho S, Yang W, Lee S, et al. Flexural wave cloaking via embedded cylinders with systematically varying thicknesses. Journal of the Acoustical Society of America, 2016, 139(6): 3320-3324 doi: 10.1121/1.4950738
|
[27] |
Brun M, Colquitt DJ, Jones IS, et al. Transformation cloaking and radial approximations for flexural waves in elastic plates. New Journal of Physics, 2014, 16(9): 093020 doi: 10.1088/1367-2630/16/9/093020
|
[28] |
Colquitt DJ, Brun M, Gei M, et al. Transformation elastodynamics and cloaking for flexural waves. Journal of the Mechanics and Physics of Solids, 2014, 72: 131-143 doi: 10.1016/j.jmps.2014.07.014
|
[29] |
Zareei A, Alam MR. Broadband cloaking of flexural waves. Physical Review E, 2017, 95(6): 063002 doi: 10.1103/PhysRevE.95.063002
|
[30] |
Liu Y, Ma Z, Su X. Linear transformation method to control flexural waves in thin plates. Journal of the Acoustical Society of America, 2016, 140(2): 1154-1161 doi: 10.1121/1.4961005
|
[31] |
Farhat M, Guenneau S, Enoch S. Ultrabroadband elastic cloaking in thin plates. Physical Review Letters, 2009, 103(2): 025301 doi: 10.1103/PhysRevLett.103.025301
|
[32] |
Stenger N, Wilhelm M, Wegener M. Experiments on elastic cloaking in thin plates. Physical Review Letters, 2012, 108(1): 014301 doi: 10.1103/PhysRevLett.108.014301
|
[33] |
Farhat M, Guenneau S, Enoch S, et al. Cloaking bending waves propagating in thin elastic plates. Physical Review B, 2009, 79(3): 033102 doi: 10.1103/PhysRevB.79.033102
|
[34] |
Futhazar G, Parnell WJ, Norris AN. Active cloaking of flexural waves in thin plates. Journal of Sound and Vibration, 2015, 356: 1-19 doi: 10.1016/j.jsv.2015.06.023
|
[35] |
Colombi A, Roux P, Guenneau S, et al. Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. Journal of the Acoustical Society of America, 2015, 137(4): 1783-1789 doi: 10.1121/1.4915004
|
[36] |
Cao LY, Yang ZC, Xu YL, et al. Flexural wave absorption by lossy gradient elastic metasurface. Journal of the Mechanics and Physics of Solids, 2020, 143: 104052 doi: 10.1016/j.jmps.2020.104052
|
[37] |
Xu YL, Cao LY, Peng P, et al. Beam splitting of flexural waves with a coding meta-slab. Applied Physics Express, 2019, 12(9): 097002 doi: 10.7567/1882-0786/ab36bd
|
[38] |
Li XS, Wang YF, Wang YS. Sparse binary metasurfaces for steering the flexural waves. Extreme Mechanics Letters, 2022, 52: 101675 doi: 10.1016/j.eml.2022.101675
|
[39] |
Cao LY, Xu YL, Assouar B, et al. Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces. Applied Physics Letters, 2018, 113(18): 183506 doi: 10.1063/1.5050671
|
[40] |
Fu YY, Tao JQ, Song AL, et al. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Frontiers of Physics, 2020, 15(5): 131-136
|
[41] |
郑周甫, 尹剑飞, 温激鸿等. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 279-288 (Zheng Zhoufu, Yin Jianfei, Wen Jihong, et al. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 279-288 (in Chinese) doi: 10.7498/aps.69.20200542
|
[42] |
Chaunsali R, Chen CW, Yang JY. Experimental demonstration of topological waveguiding in elastic plates with local resonators. New Journal of Physics, 2018, 20: 113036
|
[43] |
Cao L, Yang Z, Xu Y, et al. Pillared elastic metasurface with constructive interference for flexural wave manipulation. Mechanical Systems and Signal Processing, 2021, 146: 107035 doi: 10.1016/j.ymssp.2020.107035
|
[44] |
Liu Y, Liang Z, Liu F, et al. Source illusion devices for flexural lamb waves using elastic metasurfaces. Physical Review Letters, 2017, 119(3): 34301
|
[45] |
Xie YB, Wang WQ, Chen HY, et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 2014, 5(11): 5553
|
[46] |
Li Y, Shen C, Xie YB, et al. Tunable asymmetric transmission via lossy acoustic metasurfaces. Physical Review Letters, 2017, 119(3): 035501
|
[47] |
Wang WQ, Xie YB, Popa BI, et al. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface. Journal of Applied Physics, 2016, 120(19): 1-7
|
[48] |
Li B, Hu Y, Chen J, et al. Efficient asymmetric transmission of elastic waves in thin plates with lossless metasurfaces. Physical Review Applied, 2020, 14(5): 054029 doi: 10.1103/PhysRevApplied.14.054029
|
[49] |
Kim SY, Lee W, Lee JS, et al. Longitudinal wave steering using beam-type elastic metagratings. Mechanical Systems and Signal Processing, 2021, 156: 107688 doi: 10.1016/j.ymssp.2021.107688
|
[50] |
Wang YF, Wang YZ, Wu B, et al. Tunable and active phononic crystals and metamaterials. Applied Mechanics Reviews, 2020, 72(4): 040801-040835 doi: 10.1115/1.4046222
|
[51] |
Wang C, Zhao Z, Zhou M, et al. A comprehensive review of educational articles on structural and multidisciplinary optimization. Structural and Multidisciplinary Optimization, 2021, 64(5): 2827-2880 doi: 10.1007/s00158-021-03050-7
|
[52] |
Rong JJ, Ye WJ, Zhang SY, et al. Frequency-coded passive multifunctional elastic metasurfaces. Advanced Functional Materials, 2020, 30(50): 2005285 doi: 10.1002/adfm.202005285
|
[53] |
Rong JJ, Ye WJ. Multifunctional elastic metasurface design with topology optimization. Acta Materialia, 2020, 185: 382-399 doi: 10.1016/j.actamat.2019.12.017
|
[54] |
Wang SY, Tai K, Wang MY. An enhanced genetic algorithm for structural topology optimization. International Journal for Numerical Methods in Engineering, 2006, 65(1): 18-44 doi: 10.1002/nme.1435
|
[55] |
Wang SY, Tai K. Structural topology design optimization using genetic algorithms with a bit-array representation. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36-38): 3749-3770 doi: 10.1016/j.cma.2004.09.003
|
[56] |
Dong HW, Su XX, Wang YS, et al. Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Structural and Multidisciplinary Optimization, 2014, 50(4): 593-604 doi: 10.1007/s00158-014-1070-6
|
[57] |
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. Ieee Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017
|