EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

7阶WENO-S格式的计算效率研究

武从海 李虎 刘旭亮 罗勇 张树海

武从海, 李虎, 刘旭亮, 罗勇, 张树海. 7阶WENO-S格式的计算效率研究. 力学学报, 2023, 55(1): 239-253 doi: 10.6052/0459-1879-22-371
引用本文: 武从海, 李虎, 刘旭亮, 罗勇, 张树海. 7阶WENO-S格式的计算效率研究. 力学学报, 2023, 55(1): 239-253 doi: 10.6052/0459-1879-22-371
Wu Conghai, Li Hu, Liu Xuliang, Luo Yong, Zhang Shuhai. Investigation of the time efficiency of the seventh-order WENO-S scheme. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 239-253 doi: 10.6052/0459-1879-22-371
Citation: Wu Conghai, Li Hu, Liu Xuliang, Luo Yong, Zhang Shuhai. Investigation of the time efficiency of the seventh-order WENO-S scheme. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 239-253 doi: 10.6052/0459-1879-22-371

7阶WENO-S格式的计算效率研究

doi: 10.6052/0459-1879-22-371
基金项目: 国家自然科学基金(12172374, 12102450, 11732016)和国家数值风洞工程资助项目
详细信息
    通讯作者:

    武从海, 副研究员, 主要研究方向为计算流体力学高精度方法及计算气动声学. E-mail: wraiment@163.com

  • 中图分类号: V211.3, O241.8

INVESTIGATION OF THE TIME EFFICIENCY OF THE SEVENTH-ORDER WENO-S SCHEME

  • 摘要: WENO-S格式是一类适合于含间断问题数值模拟的加权本质无振荡格式. 这类格式的光滑因子满足对单频波为常数, 这使得其近似色散关系与线性基底格式一致, 并且具有良好的小尺度波动模拟能力.计算效率是数值方法性能指标的一个重要方面. 由于WENO-S格式的光滑因子在各子模板上的计算公式除下标不同外形式一致, 在计算线性对流方程相邻数值通量时, 部分光滑因子完全相同.为此提出一种消除WENO-S格式冗余光滑因子计算的方法. 该方法要求一条网格线上用于重构或插值的量可以表示为一个序列. 基于此要求分析其对于几种不同物理问题的可行性和使用方法. 以7阶WENO-S格式为例介绍了格式性质和去除冗余光滑因子计算的方法. 该方法中预先计算和存储一条网格线上的所有光滑因子, 在网格点较多的情况下, 光滑因子计算次数约为原7阶WENO-S格式的1/4. 对一维对流问题、球面波传播问题、二维旋转问题、二维小扰动传播问题及一维和二维无黏流动问题进行了数值模拟. 结果表明该格式对多种流动结构具有良好的捕捉能力, 并且同时具有良好的计算效率, 去除冗余计算后又降低了约20%的计算时间.

     

  • 图  1  圆周和正弦函数的光滑程度示意图

    Figure  1.  Schematic diagram of the smoothness of a circle and a sine function

    图  2  组合波的远距传输问题, 网格点数N = 400, 计算终止时间T = 2000

    Figure  2.  Long-distance advection of combined waves with the number of grid points N = 400 and the end time T = 2000

    图  3  球面波传播问题, 计算终止时间为T = 400, 空间步长为dr = 1. 时间步长为dt = 0.1

    Figure  3.  The spherical wave propagation problem with the end time T = 400, the grid length dr = 1, and the time step dt = 0.1

    图  4  二维旋转问题计算结果与精确解

    Figure  4.  The computational results and the exact solution of the two-dimensional rotation problem

    图  5  二维旋转问题两条线上的结果对比图

    Figure  5.  Comparison of results on two lines of the two-dimensional rotation problem

    图  6  二维小扰动传播问题计算结果, 网格200 × 200, 终止时间T = 30

    Figure  6.  Computational results of two-dimensional small disturbance propagation problem, with grid 200 × 200 and end time T = 30

    图  7  Shu-Osher 问题计算结果的密度对比

    Figure  7.  The density distributions of computational results of Shu-Osher problem

    图  8  激波旋涡相互作用问题, 压强等值线范围1.19-1.37, 共90条, 网格200 × 100, 终止时间T = 0.6

    Figure  8.  Shock vortex interaction problem. 90 pressure isolines ranging from 1.19 to 1.37. Component-wise seventh-order WENO schemes with grid 200 × 100 and end time T = 0.6

    表  1  几种WENO格式计算N + 1个数值通量所需浮点运算量

    Table  1.   The number of floating point operations required to calculate N + 1 numerical fluxes for several WENO schemes

    Scheme +, −*, /|·|Total
    WENO7-JS059(N + 1)87(N + 1)0146(N + 1)
    WENO7-JS155(N + 1)75(N + 1)0130(N + 1)
    WENO7-Z62(N + 1)75(N + 1)N + 1138(N + 1)
    WENO7-S077(N + 1)51(N + 1)5(N + 1)133(N + 1)
    WENO7-S147N + 7739N + 512N + 588N + 133
    下载: 导出CSV

    表  2  权系数偏离值的平均值与最大值

    Table  2.   The average values and maximum values of the deviations of weights

    FunctionWENO7-JSWENO7-ZWENO7-S
    ${f_1}\left( x \right)$average1.56 × 10−32.40 × 10−32.58 × 10−4
    minimum3.61 × 10−21.00 × 10−27.58 × 10−4
    ${f_2}\left( x \right)$average8.49 × 10−49.31 × 10−64.38 × 10−8
    minimum2.40 × 10−34.42 × 10−57.27 × 10−8
    ${f_3}\left( x \right)$average9.03 × 10−24.11 × 10−22.07 × 10−2
    minimum1.87 × 10−11.14 × 10−15.43 × 10−2
    下载: 导出CSV

    表  3  组合波远距传输问题的计算时间

    Table  3.   Computational time of long-distance advection of combined waves

    SchemeWENO7-JS0WENO7-JS1WENO7-ZWENO7-S0WENO7-S1
    time/s636.39580.32645.67546.09416.99
    下载: 导出CSV

    表  4  球面波传播问题的计算时间, dt = 0.01

    Table  4.   Computational time of spherical wave propagation problem with dt = 0.01

    SchemeWENO7-JS0WENO7-JS1WENO7-ZWENO7-S0WENO7-S1
    time/s1.4221.3361.4651.2190.953
    下载: 导出CSV

    表  5  几种格式不同网格下计算结果的L1误差和上冲/下冲幅度

    Table  5.   The L1 error and up/down overshooting amplitude of the computational results with different schemes and grids

    GridWENO7-JSWENO7-ZWENO7-S
    L1 error200 × 2001.7591.4281.600
    400 × 4000.9590.7880.886
    800 × 8000.5240.4300.484
    up/down overshooting amplitude $\delta$200 × 2001.11 × 10−41.45 × 10−25.02 × 10−3
    400 × 4009.86 × 10−59.13 × 10−32.72 × 10−4
    800 × 8001.27 × 10−42.58 × 10−22.87 × 10−8
    下载: 导出CSV

    表  6  二维旋转问题的计算时间

    Table  6.   Computational time for the two-dimensional rotation problem

    SchemeWENO7-JS0WENO7-JS1WENO7-ZWENO7-S0WENO7-S1
    time/s114.731107.400117.49399.74476.327
    下载: 导出CSV

    表  7  二维小扰动传播问题的计算时间

    Table  7.   Computational time of two-dimensional small disturbance propagation problem

    SchemeWENO7-JS0WENO7-JS1WENO7-ZWENO7-S0WENO7-S1
    time/s8.8427.7808.3777.4856.150
    下载: 导出CSV

    表  8  Shu-Osher问题计算时间, N = 2000

    Table  8.   Computational time of Shu-Osher problem, N = 2000

    SchemeWENO7-JS0WENO7-JS1WENO7-ZWENO7-S0WENO7-S1
    time/s3.3303.0373.3173.0152.255
    下载: 导出CSV

    表  9  激波旋涡相互作用问题的计算时间

    Table  9.   Computational time of shock vortex interaction problem

    SchemeWENO7-JS0WENO7-JS1WENO7-ZWENO7-S0WENO7-S1
    time/s14.35013.19514.52013.00710.159
    下载: 导出CSV
  • [1] Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 1983, 49(3): 357-393 doi: 10.1016/0021-9991(83)90136-5
    [2] 张涵信. 无波动、无自由参数的耗散差分格式. 空气动力学学报, 1988, 6(2): 143-165 (Zhang Hanxin. Non-oscillatory and non-free-parameter dissipation difference scheme. Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese)
    [3] Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 1994, 115(1): 200-212 doi: 10.1006/jcph.1994.1187
    [4] Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126(1): 202-228 doi: 10.1006/jcph.1996.0130
    [5] Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 2005, 207(2): 542-567 doi: 10.1016/j.jcp.2005.01.023
    [6] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227(6): 3192-3211
    [7] 骆信, 吴颂平. 改进的5阶WENO-Z + 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese) doi: 10.6052/0459-1879-19-249
    [8] Ha Y, Kim CH, Lee YJ, et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. Journal of Computational Physics, 2013, 232(1): 68-86 doi: 10.1016/j.jcp.2012.06.016
    [9] Hu XY, Wang Q, Adams NA. An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2010, 229(23): 8952-8965 doi: 10.1016/j.jcp.2010.08.019
    [10] Zhang SH, Shu CW. A new smoothness indicator for the WENO Schemes and its effect on the convergence to steady state. Journal of Scientific Computing, 2007, 31: 273-305 doi: 10.1007/s10915-006-9111-y
    [11] Yamaleev NK, Carpenter MH. A systematic methodology for constructing high-order energy stable WENO schemes. Journal of Computational Physics, 2009, 228(11): 4248-4272 doi: 10.1016/j.jcp.2009.03.002
    [12] Deng XG, Zhang HX. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2000, 165(1): 22-44 doi: 10.1006/jcph.2000.6594
    [13] 邓小刚, 刘昕, 毛枚良等. 高精度加权紧致非线性格式的研究进展. 力学进展, 2007, 37(3): 417-427 (Deng Xiaogang, Liu Xin, Mao Meiliang, et al. Advances in high-order accurate weighted compact nonlinear schemes. Advances in Mechanics, 2007, 37(3): 417-427 (in Chinese) doi: 10.3321/j.issn:1000-0992.2007.03.009
    [14] 张树海. 加权型紧致格式与加权本质无波动格式的比较. 力学学报, 2016, 48(2): 336-347 (Zhang Shuhai. The comparison of weighted compact schemes and weno scheme. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 336-347 (in Chinese) doi: 10.6052/0459-1879-15-190
    [15] Friedrichs O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. Journal of Computational Physics, 1998, 144(1): 194-212 doi: 10.1006/jcph.1998.5988
    [16] Hu C, Shu CW. Weighted essentially non-oscillatory schemes on triangular meshes. Journal of Computational Physics, 1999, 150(1): 97-127 doi: 10.1006/jcph.1998.6165
    [17] Wu CH, Wu L, Zhang SH. A smoothness indicator constant for sine functions. Journal of Computational Physics, 2020, 419: 109661 doi: 10.1016/j.jcp.2020.109661
    [18] Wu CH, Wu L, Li H, et al. Very high order WENO schemes using efficient smoothness indicators. Journal of Computational Physics, 2021, 432: 110158 doi: 10.1016/j.jcp.2021.110158
    [19] Pirozzoli S. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 2006, 219(2): 489-497 doi: 10.1016/j.jcp.2006.07.009
    [20] Don WS, Borges R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. Journal of Computational Physics, 2013, 250: 347-372 doi: 10.1016/j.jcp.2013.05.018
    [21] Lele SK. Compact difference schemes with spectral-like resolution. Journal of Computational Physics, 1992, 103(1): 16-42 doi: 10.1016/0021-9991(92)90324-R
    [22] Li XL, Leng Y, He ZW. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis. International Journal for Numerical Methods in Fluids, 2013, 73(6): 560-577 doi: 10.1002/fld.3812
    [23] 毛枚良, 燕振国, 刘化勇等. 高阶加权非线性格式的拟线性频谱分析方法研究. 空气动力学学报, 2015, 33(1): 1-9 (Mao Meiliang, Yan Zhenguo, Liu Huayong, et al. Study of quasi-linear spectral analysis method of high-order weighted nonlinear schemes. Acta Aerodynamica Sinica, 2015, 33(1): 1-9 (in Chinese)
    [24] Zhao S, Lardjane N, Fedioun I. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows. Computers and Fluids, 2014, 95: 74-87 doi: 10.1016/j.compfluid.2014.02.017
    [25] Li H, Luo Y, Zhang SH. Assessment of upwind/symmetric weno schemes for direct numerical simulation of screech tone in supersonic jet. Journal of Scientific Computing, 2021, 87: 3 doi: 10.1007/s10915-020-01407-6
    [26] 李虎, 罗勇, 刘旭亮等. 一种面向激波噪声计算的加权优化紧致格式及非线性效应分析. 力学学报, 2022, 54(10): 2747-2759 (Li Hu, Luo Yong, Liu Xuliang, et al. A weighted-optimization compact scheme for shock-associated noise computation and its nonlinear effect analysis. Chinese Journal of Theoretical and Applied Mechanics., 2022, 54(10): 2747-2759 (in Chinese) doi: 10.6052/0459-1879-22-254
    [27] Cravero I, Puppo G, Semplice M, et al. Cool WENO schemes. Computers and Fluids, 2018, 169: 71-86 doi: 10.1016/j.compfluid.2017.07.022
    [28] Castro M, Costa B, Don WS. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 2011, 230(5): 1766-1792 doi: 10.1016/j.jcp.2010.11.028
    [29] Balsara DS, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high-order of accuracy. Journal of Computational Physics, 2000, 160(2): 405-452 doi: 10.1006/jcph.2000.6443
    [30] Baeza A, Burger R, Mulet P, et al. On the efficient computation of smoothness indicators for a class of a WENO reconstructions. Journal of Scientific Computing, 2019, 80: 1240-1263 doi: 10.1007/s10915-019-00974-7
    [31] 刘旭亮, 武从海, 李虎等. WENO格式的一种新型光滑因子及其应用. 空气动力学学报, 2022, 40: 1-14 (Liu Xuliang, Wu Conghai, Li Hu, et al. A new type of smoothness indicator for weighted essentially non-oscillatory schemes and its application. Acta Aerodynamica Sinica, 2022, 40: 1-14 (in Chinese)
    [32] Rathan S, Raju GN, Bhise AA. Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws. Applied Numerical Mathematics, 2020, 157: 255-275
    [33] 柳军, 刘伟, 曾明等. 高超声速三维热化学非平衡流场的数值模拟. 力学学报, 2003, 35(6): 730-734 (Liu Jun, Liu Wei, Zeng ming, et al. Numerical simulation of 3 D hypersonic thermochemical nonequilibrium flow. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(6): 730-734 (in Chinese) doi: 10.3321/j.issn:0459-1879.2003.06.011
    [34] 王东红. 多介质流体界面追踪方法研究及误差分析. [博士论文]. 南京: 南京航空航天大学, 2014: 1-7

    Wang Donghong. Investigation of front tracking method for multi-component flow and error analysis. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 1-7 (in Chinese)
    [35] Hennessy JL, Patterson DA. 计算机体系结构量化研究方法(英文版第5版). 北京: 人民邮电出版社出版, 2013: 193-255

    (Hennessy JL, Patterson DA. Computer Architecture: A Quantitative Approach, Fifth Edition. Beijing: Morgan Kaufmann Publishers Inc, 2013: 193-255 (in Chinese))
    [36] Hardin JC, Ristorcelli JR, Tam CKW. Benchmark problems and solutions. ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, NASA CP-3300, 1995: 1-14
    [37] Zalesak ST. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 1979, 31(3): 335-362 doi: 10.1016/0021-9991(79)90051-2
    [38] Liu XL, Zhang SH, Zhang HX, et al. A new class of central compact schemes with spectral-like resolution I: Linear schemes. Journal of Computational Physics, 2013, 248: 235-256
  • 加载中
图(8) / 表(9)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  120
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 录用日期:  2022-11-11
  • 网络出版日期:  2022-11-12
  • 刊出日期:  2023-01-04

目录

    /

    返回文章
    返回