STABILIZING UNSTABLE PERIODIC TRAJECTORIES OF CHAOTIC SYSTEMS WITH TIME-VARYING SWITCHING DELAYED FEEDBACK CONTROL
-
摘要: 为提高经典时滞反馈控制镇定不稳定周期轨线的效果, 扩大受控周期轨线的稳定区域, 本文基于时变切换策略对经典时滞反馈控制进行改进, 提出了时变切换时滞反馈控制. 时变切换时滞反馈控制的控制信号仅在特定的时段中存在, 而在其他时段上不存在控制信号, 这与经典时滞反馈控制中具有固定的控制信号是不同的. 通过实例分析, 研究了时变切换时滞反馈控制在镇定不稳定周期轨线中的具体性能. 以反馈增益系数为变量, 计算受控周期轨线的最大条件Lyapunov指数, 得到了受控周期轨线的稳定区域随切换频率变化的关系曲线. 结果表明, 随着切换频率增大, 受控周期轨线的稳定区域呈现非平滑地变化. 当选取恰当的切换频率时, 时变切换时滞反馈控制的稳定区域显著大于经典时滞反馈控制的稳定区域. 在混沌控制的工程实践中, 控制信号常常受到一定的限制. 要实现对目标周期轨线的稳定控制, 就需要受控周期轨线具有足够大的稳定区域. 因此, 与经典时滞反馈控制相比, 本文提出的时变切换时滞反馈控制具有更广泛的应用前景.
-
关键词:
- 混沌控制 /
- 时滞反馈 /
- 周期轨线 /
- 时变切换 /
- 条件Lyapunov指数
Abstract: In order to improve the effect of the classical delayed feedback control in stabilizing the unstable periodic trajectory and expand the stability region, the time-varying switching strategy is used to modify the classical delayed feedback control, which leads to the method of time-varying switching delayed feedback control. The control signal of the time-varying switching delayed feedback control only exists in specific time intervals, and there is no control signal in other time intervals, which is different from the fixed control signal in the classical delayed feedback control. Through case studies, the specific performance of time-varying switching delayed feedback control in stabilizing unstable periodic trajectory is investigated. The maximum conditional Lyapunov exponent of the controlled periodic trajectory is calculated as a function of the feedback strength. The relationship between the stability region of the controlled periodic trajectory and the switching frequency is obtained. The results show that with the increase of switching frequency, the stable region of the controlled periodic trajectory changes non smoothly. The stability region of the time-varying switching delayed feedback control is significantly larger than that of the classical delayed feedback control when the switching frequency is properly selected. In the engineering practice of chaos control, the control signal is often constrained. To achieve the stable control of the target periodic trajectory, the controlled periodic trajectory needs to have a large enough stable region. Therefore, compared with the classical time-delay feedback control, the time-varying switching time-delay feedback control proposed in this paper has a wider application prospect. -
图 3 受控周期轨线
$ {{{\boldsymbol{X}}}_k}(t) $ 最大条件Lyapunov指数随反馈增益系数$ g $ 的变化曲线对比图, 红色虚线和蓝色实线分别对应于DFC和TSDFCFigure 3. The comparison of the maximum Lyapunov exponent of periodic trajectory
$ {{{\boldsymbol{X}}}_k}(t) $ as a function of the feedback strength, the red dotted line and the blue solid line correspond to DFC and TSDFC, respectively图 4 系统(9)的时间序列和TSDFC控制信号在不同时段上切换示意图, 在灰色时段中控制信号存在, 而在灰色时段外控制信号消失
Figure 4. The time series of system (9) and the schematic diagram of the switching of TSDFC control signals in different time intervals, where the control signal exists in the gray time intervals and disappears outside the gray time intervals
图 6 受控周期轨线
$ {{{\boldsymbol{X}}}_k}(t) $ 的误差指数随反馈增益系数$ g $ 的变化曲线对比图, 红色虚线和蓝色实线分别对应于DFC和TSDFCFigure 6. The comparison of the error index of the controlled periodic trajectory
$ {{{\boldsymbol{X}}}_k}(t) $ as a function of the feedback strength$ g $ , the red dotted line and the blue solid line correspond to DFC and TSDFC, respectively图 8 受控周期轨线
$ {{{\boldsymbol{X}}}_3}(t) $ 最大条件Lyapunov指数随反馈增益系数$ g $ 的变化曲线对比图, 红色虚线和蓝色实线分别对应于DFC和TSDFCFigure 8. The comparison of the maximum conditional Lyapunov exponent of the controlled periodic trajectory
$ {{{\boldsymbol{X}}}_3}(t) $ as a function of the feedback strength$ g $ , the red dotted line and the blue solid line correspond to DFC and TSDFC, respectively图 10 受控周期轨线
$ {{{\boldsymbol{X}}}_3}(t) $ 的误差指数随反馈增益系数$ g $ 的变化曲线对比图, 红色虚线和蓝色实线分别对应于DFC和TSDFCFigure 10. The comparison of the error index of the controlled periodic trajectory
$ {{{\boldsymbol{X}}}_3}(t) $ as a function of the feedback strength$ g $ , the red dotted line and the blue solid line correspond to DFC and TSDFC, respectively表 1 受控周期轨线
${{{\boldsymbol{X}}}_k}(t)$ 的稳定区域Table 1. The stability regions of the controlled periodic trajectory
${{{\boldsymbol{X}}}_k}(t)$ Trajectory Stability region Width of stability region $ {W_s} $ DFC TSDFC DFC TSDFC $ {{{\boldsymbol{X}}}_1}(t) $ (0.22, 2.5) (0.44, 9.9) 2.28 9.46 $ {{{\boldsymbol{X}}}_2}(t) $ (0.11, 0.29) (0.24, 2.0) 0.18 1.76 -
[1] Din Q. Neimark-Sacker bifurcation and chaos control in Hassell-Varley model. Journal of Difference Equations and Applications, 2017, 23(4): 741-762 doi: 10.1080/10236198.2016.1277213 [2] Jiang XW, Chen C, Zhang XH, et al. Bifurcation and chaos analysis for a discrete ecological developmental systems. Nonlinear Dynamics, 2021, 104(4): 4671-4680 doi: 10.1007/s11071-021-06474-4 [3] Huang Y, Huang Q, Wang Q. Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 47(7): 1229-1240 [4] Telles Ribeiro JG, Pereira M, Cunha A, et al. Controlling chaos for energy harvesting via digital extended time-delay feedback. The European Physical Journal Special Topics, 2022, 231: 1485-1490 [5] Pei L, Wu F. Periodic solutions, chaos and bi-stability in the state-dependent delayed homogeneous additive increase and multiplicative decrease/random early detection congestion control systems. Mathematics and Computers in Simulation, 2021, 182: 871-887 doi: 10.1016/j.matcom.2020.06.001 [6] Kuznetsov NV, Leonov GA, Shumafov MM. A short survey on Pyragas time-delay feedback stabilization and odd number limitation. IFAC-Papers on Line, 2015, 48(11): 706-709 doi: 10.1016/j.ifacol.2015.09.271 [7] 陈玲, 唐有绮. 时变张力作用下轴向运动梁的分岔与混沌. 力学学报, 2019, 51(4): 1180-1188 (Chen Ling, Tang Youqi. Bifurcation and chaos of axially moving beams under time-varying tension. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1180-1188 (in Chinese) [8] 姚志刚, 张伟, 陈丽华. 压电复合材料层合梁的分岔、混沌动力学与控制. 力学学报, 2009, 41(1): 129-140 (Yao Zhigang, Zhang Wei, Chen Lihua. Bifurcation, chaotic dynamics and control of piezoelectric laminated composite beam. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 129-140 (in Chinese) [9] Lathrop DP, Kostelich EJ. Characterization of an experimental strange attractor by periodic orbits. Physical Review A, 1989, 40(7): 4028 doi: 10.1103/PhysRevA.40.4028 [10] Ott E, Grebogi C, Yorke JA. Controlling chaos. Physical Review Letters, 1990, 64(11): 1196 doi: 10.1103/PhysRevLett.64.1196 [11] Pyragas K. Continuous control of chaos by self-controlling feedback. Physics Letters A, 1992, 170(6): 421-428 doi: 10.1016/0375-9601(92)90745-8 [12] Mitra RK, Banik AK, Chatterjee S. Response of a harmonically forced dry friction damped system under time-delayed state feedback. Journal of Computational and Nonlinear Dynamics, 2018, 13(3): 031001 [13] 张士荣, 赵俊杰, 谈发明. 半导体激光器混沌电路延时反馈控制方法. 激光杂志, 2022, 43(1): 154-158 (Zhang Shirong, Zhao Junjie, Tan Faming. Delay feedback control method of semiconductor laser chaotic circuit. Chinese Journal of Laser Journal, 2022, 43(1): 154-158 (in Chinese) [14] 杨坤一, 董云宁. 时滞反馈控制下五维能源供需系统的稳定性分析及Hopf分支性质. 系统科学与数学, 2021, 41(8): 2113-2136 (Yang Kunyi, Dong Yunning. Stabilization and Hopf bifurcation properties of the five-dimensional energy demand-supply system under delayed feedback control. Chinese Journal of System Science and Mathematics, 2021, 41(8): 2113-2136 (in Chinese) [15] Nakajima H. On analytical properties of delayed feedback control of chaos. Physics Letters A, 1997, 232(3-4): 207-210 doi: 10.1016/S0375-9601(97)00362-9 [16] Pyragas K. Control of chaos via extended delay feedback. Physics Letters A, 1995, 206(5-6): 323-330 doi: 10.1016/0375-9601(95)00654-L [17] Zheng YG, Zhang YY. Stabilization of periodic oscillations with transient delayed feedback control. Journal of the Franklin Institute, 2021, 358(2): 1240-1251 doi: 10.1016/j.jfranklin.2020.11.019 [18] 代晗, 赵艳影. 负刚度时滞反馈控制动力吸振器的等峰优化. 力学学报, 2021, 53(6): 1720-1732 (Dai Han, Zhao Yanying. Equal-peak optimization of dynamic vibration absorber with negative stiffness and delay feedback control. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1720-1732 (in Chinese) [19] Nakajima H, Ueda Y. Half-period delayed feedback control for dynamical systems with symmetries. Physical Review E, 1998, 58(2): 1757 doi: 10.1103/PhysRevE.58.1757 [20] Nakajima H, Ito H, Ueda Y. Automatic adjustment of delay time and feedback gain in delayed feedback control of chaos. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 1997, 80(9): 1554-1559 [21] 张婉洁, 牛江川, 申永军等. 含分数阶Bingham模型的阻尼减振系统时滞半主动控制. 力学学报, 2022, 54(1): 173-183 (Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, et al. Time-delayed semi-active control of damping system with fractional-order Bingham model. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 173-183 (in Chinese) [22] 夏前锦, 连龙, 瞿建雄等. 倾斜吹吸控制下湍流边界层减阻的直接数值模拟. 力学学报, 2021, 53(9): 2454-2467 (Xia Qianjin, Lian Long, Qu Jianxiong, et al. Direct numerical simulation of drag reduction in turbulent boundary layers controlled by inclined blowing and sucking. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2454-2467 (in Chinese) doi: 10.6052/0459-1879-21-223 [23] Arunshankar J. Control of nonlinear two-tank hybrid system using sliding mode controller with fractional-order PI-D sliding surface. Computers & Electrical Engineering, 2018, 71: 953-965 [24] Wei Q, Niu Z, Chen B, et al. Bang-bang control applied in airfoil roll control with plasma actuators. Journal of Aircraft, 2013, 50(2): 670-677 doi: 10.2514/1.C031964 [25] Arunshankar J. Control of nonlinear two-tank hybrid system using sliding mode controller with fractional-order PI-D sliding surface. Computers & Electrical Engineering, 2018, 71: 953-965 [26] Li S, Sun N, Chen L, et al. Network synchronization with periodic coupling. Physical Review E, 2018, 98(1): 012304 [27] 陈跃, 黄振坤, 宾红华等. 基于开关周期性耦合的混沌系统量化同步. 集美大学学报:自然科学版, 2020, 25(3): 222-227 (Chen Yue, Huang Zhenkun, Bin Honghua, et al. Quantized synchronization of chaotic systems based on on-off periodic coupling. Chinese Journal of Jimei University:Natural Science Edition, 2020, 25(3): 222-227 (in Chinese) [28] Chen L, Qiu C, Huang HB. Synchronization with on-off coupling: Role of time scales in network dynamics. Physical Review E, 2009, 79(4): 045101 [29] Ghosh A, Godara P, Chakraborty S. Understanding transient uncoupling induced synchronization through modified dynamic coupling. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2018, 28(5): 053112 doi: 10.1063/1.5016148 [30] Buscarino A, Frasca M, Branciforte M, et al. Synchronization of two Rössler systems with switching coupling. Nonlinear Dynamics, 2017, 88(1): 673-683 doi: 10.1007/s11071-016-3269-0 [31] Chagas TP, Toledo BA, Rempel EL, et al. Optimal feedback control of the forced van der Pol system. Chaos, Solitons & Fractals, 2012, 45(9-10): 1147-1156 [32] Eckhardt B, Yao D. Local Lyapunov exponents in chaotic systems. Physical D, 1993, 65: 100-108 doi: 10.1016/0167-2789(93)90007-N [33] Ghosh A, Godara P, Chakraborty S. Understanding transient uncoupling induced synchronization through modified dynamic coupling. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2018, 28(5): 05311 -