FULL SOLUTION FOR CHARACTERIZING STRESS FIELDS NEAR THE TIP OF MODE-I CRACK UNDER PLANE AND POWER-LAW PLASTIC CONDITIONS
-
摘要: 在航空航天、船舶、石油管道和核电等领域, 服役结构或部件在长期极端条件下运行, 不可避免地会产生裂纹, 因此, 为研究含裂纹结构的准静态断裂行为, 必须了解裂纹尖端附近区域的应力应变场特点. 对于幂律材料裂纹构元, 研究平面应变和平面应力条件下I型裂纹尖端应力场的解析分布. 基于能量密度等效和量纲分析, 推导了能量密度中值点代表性体积单元 (representative volume element, RVE)的等效应力解析方程, 并定义其为应力因子, 进而针对有限平面应变和平面应力紧凑拉伸(compact tension, CT)试样和单边裂纹弯曲(single edge bend, SEB)试样, 以应力因子作为应力特征量, 并构造用于表征裂尖等效应力等值线的蝶翅轮廓式和扇贝轮廓式三角特殊函数, 提出描述幂律塑性条件下平面I型裂纹尖端应力场的半解析模型. 该半解析模型形式简单, 对CT和SEB试样的裂尖应力场的预测结果与有限元分析的结果比较表明, 两者之间均密切吻合, 模型公式可直接用于预测I型裂纹尖端应力分布, 方便于断裂安全评价和理论发展.Abstract: In the fields of aerospace, ships, oil pipelines and nuclear power, there will be cracks inevitably in structure or component part when running for a long time under extreme conditions. Therefore, it is necessary to explore the features of the stress-strain fields near the crack tip, to study the quasi-static fracture behavior of cracked structures. In this paper, the stress distributions near the tip of mode-I cracked specimens under plane strain and plane stress conditions are studied for power-law hardening material. Based on the energy density equivalence and dimensional analysis, the analytical equation of equivalent stress of representative volume element (RVE) with the median energy density of a finite-dimensions specimen is proposed, and it is defined as the stress factor. Furthermore, for compact tension (CT) and single edge bend (SEB) finite size specimens under plane strain and plane stress conditions, the stress factor is used as a characteristic variable, and a special trigonometric function is assumed to characterize butterfly-wings type or scallop type contour lines of the equivalent stress near the mode-I crack tip, and then a semi-analytical model for compact tension specimens and single edge bend specimens under plane strain and plane stress and fully plastic conditions is proposed to describe the stress fields near the crack tip. As shown in comparing results given by finite element analysis to those predicted by the model for stress fields near the crack tip of the two cracked specimens, all agree well with each other. The semi-analytical model of stress field near the crack tip proposed in this paper is simple in form and accurate in result. It can be directly used to predict the stress distribution near the tip of mode-I crack, which is convenient for fracture safety evaluation and theoretical development.
-
表 1 方程(15)模型参数
Table 1. Parameters of Eq. (15)
Specimen Condition m k5 a/W CT plane strain 2.2800 1.4308 [0.45,0.75] plane stress 2.2800 2.0971 SEB plane strain 1.9560 2.3400 [0.40,0.75] plane stress 1.9560 3.3024 表 2 方程(19)参数
Table 2. Parameters of Eq. (19)
Specimen Condition Stress Sub msub0 msub1 a/W CT plane strain σsub eq 0.0000 0.0000 [0.45,0.75] 11 0.0873 1.1981 22 0.0873 1.1981 12 0.0172 0.4345 plane stress eq 0.0000 1.2658 11 0.0000 1.2658 22 0.0000 1.2658 12 0.0000 1.2658 SEB plane strain σsub eq 0.0722 0.5419 [0.40,0.75] 11 −0.244 1.2000 22 −0.0754 0.7258 12 0.0000 0.0000 plane stress eq 0.0000 0.0000 11 0.0000 0.0000 22 0.0000 0.0000 12 −0.0150 −0.2903 表 3 方程(23)模型参数
Table 3. Parameters of Eq. (23)
Specimen Condition Stress Sub dsub0 dsub1 dsub2 dsub3 a/W CT plane strain σsub eq 1.5013 −0.6940 1.6796 0.0000 [0.45,0.75] 11 1.1851 0.3635 2.9854 3.7610 22 1.2000 0.0000 0.0000 0.0000 12 4.8305 −4.0000 −0.3490 1.8316 plane stress eq 1.1448 0.2524 1.5459 −1.8604 11 1.0655 0.6019 −0.8832 −1.9732 22 −6.0795 −7.0000 −0.4000 4.7810 12 1.4504 −0.04557 −3.0191 −4.0356 SEB plane strain σsub eq 0.9250 0.2067 3.2036 1.3810 [0.40,0.75] 11 1.5339 0.5333 −2.2470 −4.0212 22 8.1002 −7.0000 0.2605 −4.7292 12 0.8052 0.1382 2.7227 1.4797 plane stress eq 1.0863 0.2285 −1.8062 −1.0613 11 0.9674 0.4968 2.6107 4.5223 22 −3.0386 3.9167 0.4285 1.5112 12 1.1793 0.0306 4.9568 −0.1173 表 4 模型参数
Table 4. Parameters of model
Specimen Condi
tionStress Sub qsub0 qsub1 qsub2 qsub3 qsub4 csub0 csub1 bsub0 bsub1 a/W CT plane strain σsub eq 1.00 − − − − 2.1842 0.2756 −0.4266 0.2017 [0.45,0.75] 11 π/2 0.3333 0.3333 0.9999 π/2 2.3397 1.5564 0.1430 −0.4930 22 π/2 0.6667 0.6667 2.0001 π/2 0.5754 6.7272 −0.1684 −0.0309 12 0.00 1.0000 2.0000 0.0000 π/2 0.2153 4.9742 0.0698 −0.1902 plane stress eq 0.8500 − − − − 0.6707 1.3870 −0.3550 −0.2910 11 π/2 0.5550 0.5550 1.6550 π/2 −0.1669 −9.5370 −0.53 0.0000 22 π/2 0.8150 0.8150 2.4450 π/2 0.1860 8.9576 −0.3200 0.0000 12 0.00 1.0000 2.0000 0.0000 π/2 0.2261 5.3946 −0.1803 0.0000 SEB plane strain σsub eq 1.00 − − − − 1.9865 0.2955 −0.3812 0.1566 [0.45,0.75] 11 π/2 0.3561 0.3561 1.0683 π/2 1.8385 0.5354 0.0117 −0.2631 22 π/2 0.7683 0.7683 2.3049 π/2 0.2759 3.9625 −0.2346 0.1882 12 0.00 1.0000 2.0000 0.0000 π/2 0.1182 3.2612 0.1091 −0.1175 plane stress eq 0.85 − − − − 0.2461 0.6570 −0.0420 −0.0630 11 π/2 0.6000 0.6000 1.8000 π/2 −0.04845 −8.4969 0.4000 −0.6200 22 π/2 0.8033 0.8033 2.4099 π/2 0.0030 146.6888 1.5301 −1.5831 12 0.00 1.0000 2.0000 0.0000 π/2 0.1377 2.6570 −0.0551 0.0465 -
[1] Cherepanov GP. The propagation of cracks in a continuous medium. J Appl Math Mech, 1967, 31(3): 503-512 doi: 10.1016/0021-8928(67)90034-2 [2] Rice JR. A path independent integral and the approximate analysis of concentration by notches and cracks. Int J Appl Mech, 1968, 35: 379-386 doi: 10.1115/1.3601206 [3] Hutchinson JW. Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids, 1968, 16: 13-31 doi: 10.1016/0022-5096(68)90014-8 [4] Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids, 1968, 16: 1-12 doi: 10.1016/0022-5096(68)90013-6 [5] Shih CF. Tables of Hutchinson-Rice-Rosengren singular field quantities. Brown University Materials Research Laboratory Rep. MRL E-147, 1983 [6] Betegon C, Hancock J. Two-parameter characterization of elastic-plastic crack-tip fields. Int J Appl Mech, 1991, 58: 104-113 doi: 10.1115/1.2897135 [7] Sharma SM, Aravas N. Determination of higher-order terms in asymptotic elastoplastic crack tip solutions. J Mech Phys Solids, 1991, 39: 1043-1072 doi: 10.1016/0022-5096(91)90051-O [8] Chao YJ, Yang S, Sutton M. On the fracture of solids characterized by one or two parameters: theory and practice. J Mech Phys Solids, 1994, 42(4): 629-647 doi: 10.1016/0022-5096(94)90055-8 [9] Nikishkov GP, Bruckner-Foit A, Munz D. Calculation of the second fracture parameter for finite cracked bodies using a three-term elastic-plastic asymptotic expansion. Engng Fract Mech, 1995, 52(4): 685-701 doi: 10.1016/0013-7944(95)00024-P [10] O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields. J Mech Phys Solids, 1991, 39(8): 989-1015 doi: 10.1016/0022-5096(91)90049-T [11] O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-II. Fracture applications. J Mech Phys Solids, 1992, 40(5): 939-963 doi: 10.1016/0022-5096(92)90057-9 [12] Li YC, Wang ZQ. High-order asymptotic field of tensile plane-strain nonlinear crack problems. Sci Sin (Ser A) , 1986, 29(9): 941-955 [13] Yang S, Chao YJ, Sutton MA. Complete theoretical analysis for higher order asymptotic terms and the HRR zone at a crack tip for mode I and mode II loading of a hardening material. Acta Mech, 1993, 98: 79-98 doi: 10.1007/BF01174295 [14] Yang S, Chao YJ, Sutton M. Higher order asymptotic crack tip fields in a power law hardening material. Engng Fract Mech, 1993, 45(1): 1-20 doi: 10.1016/0013-7944(93)90002-A [15] Nikishkov GP. An algorithm and a computer program for the three-term asymptotic expansion of elastic–plastic crack tip stress and displacement fields. Engng Fract Mech, 1995, 50(1): 65-83 doi: 10.1016/0013-7944(94)00139-9 [16] Nikishkov GP, Matvienko YG. Elastic–plastic constraint parameter A for test specimens with thickness variation. Fatigue Fract Eng Mater Struct, 2016, 39(8): 939-949 doi: 10.1111/ffe.12390 [17] Matvienko YG, Nikishkov GP. Two-parameter J-A concept in connection with crack-tip constraint. Theor Appl Fract Mech, 2017, 92: 306-317 doi: 10.1016/j.tafmec.2017.04.007 [18] Ding P, Wang X. Solutions of the second elastic–plastic fracture mechanics parameter in test specimens. Engng Fract Mech, 2010, 77: 3462-3480 doi: 10.1016/j.engfracmech.2010.09.007 [19] Ding P, Wang X. An estimation method for the determination of the second elastic–plastic fracture mechanics parameters. Engng Fract Mech, 2012, 79: 295-311 doi: 10.1016/j.engfracmech.2011.11.010 [20] Ji X, Zhu F. Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension. Acta Mech Sinica, 2019, 35(4): 828-838 doi: 10.1007/s10409-019-00846-1 [21] Ji X, Zhu F. Elastic-plastic multi-Scale finite element analysis of fracture test on 304 stainless steel compact tension specimen. Nov Res Sci, 2021, 7(3): 000663 [22] Anderson TL, Dodds RH. Specimen size requirements for fracture toughness testing in the transition region. Journal of Testing and Evaluation, 1991, 19(2): 123-134 doi: 10.1520/JTE12544J [23] Mostafavi M, Pavier MJ, Smith DJ. Unified measure of constraint//International Conference on Engineering Structural Integrity Assessment, Manchester, 2009 [24] Mostafavi M, Smith DJ, Pavier MJ. Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33: 724-739 [25] Mostafavi M, Smith DJ, Pavier MJ. Fracture of aluminium alloy 2024 under biaxial and triaxial loading. Engineering Fracture Mechanics, 2011, 78(8): 1705-1716 doi: 10.1016/j.engfracmech.2010.11.006 [26] Mostafavi M, Smith DJ, Pavier MJ. A micromechanical fracture criterion accounting for in-plane and out-of-plane constraint. Computational Materials Science, 2011, 50(10): 2759-2770 doi: 10.1016/j.commatsci.2011.04.023 [27] Chen H, Cai LX. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle. Acta Materialia, 2016, 121: 181-189 doi: 10.1016/j.actamat.2016.09.008 [28] Chen H, Cai LX. Unified elastoplastic model based on strain energy equivalence principle. Appl Math Model, 2017, 52: 664-671 doi: 10.1016/j.apm.2017.07.042 [29] Chen H, Cai LX. An elastoplastic energy model for predicting the deformation behaviors of various structural components. Appl Math Model, 2019, 68: 405-421 doi: 10.1016/j.apm.2018.11.024 [30] Peng YQ, Cai LX, Chen H, et al. A novel semi-analytical method based on equivalent energy principle to obtain J resistance curves of ductile materials. Int J Mech Sci, 2018, 148: 31-38 doi: 10.1016/j.ijmecsci.2018.08.016 [31] Irwin GR. Analysis of stress and strains near the end of a crack traversing a plate. Int J Appl Mech, 1957, 24(3): 361-364 doi: 10.1115/1.4011547 [32] Anderson TL. Fracture Mechanics: Fundamentals and Applications, CRC Press: Boca Raton, 2005 -