[1] |
Li L, Ravi S, Xie G, et al. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 2021, 477(2249): 20200810 doi: 10.1098/rspa.2020.0810
|
[2] |
Weihs D. Hydromechanics of fish schooling. Nature, 1973, 241(5387): 290-291 doi: 10.1038/241290a0
|
[3] |
Chen SY, Fei YHJ, Chen YC, et al. The swimming patterns and energy-saving mechanism revealed from three fish in a school. Ocean Engineering, 2016, 122: 22-31 doi: 10.1016/j.oceaneng.2016.06.018
|
[4] |
Daghooghi M, Borazjani I. The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Bioinspiration & Biomimetics, 2015, 10(5): 056018
|
[5] |
Deng J, Shao XM. Hydrodynamics in a diamond-shaped fish school. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 438-442 doi: 10.1016/S1001-6058(06)60090-5
|
[6] |
Chung MH. Hydrodynamic performance of two-dimensional undulating foils in triangular formation. Journal of Mechanics, 2011, 27(2): 177-190 doi: 10.1017/jmech.2011.21
|
[7] |
Tian FB, Wang W, Wu J, et al. Swimming performance and vorticity structures of a mother-calf pair of fish. Computers & Fluids, 2016, 124: 1-11
|
[8] |
Gazzola M, Tchieu AA, Alexeev D, et al. Learning to school in the presence of hydrodynamic interactions. Journal of Fluid Mechanics, 2016, 789: 726-749 doi: 10.1017/jfm.2015.686
|
[9] |
Novati G, Verma S, Alexeev D, et al. Synchronisation through learning for two self-propelled swimmers. Bioinspiration & Biomimetics, 2017, 12(3): 036001
|
[10] |
王亮. 仿生鱼群自主游动及控制的研究. [ 博士论文 ]. 南京: 河海大学, 2007Wang Liang. Numerical simulation and control of self-propelled swimming of bionics fish school. [PhD Thesis]. Nanjing: Hehai University, 2007 (in Chinese)
|
[11] |
Li S, Li C, Xu L, et al. Numerical simulation and analysis of fish-like robots swarm. Applied Sciences, 2019, 9(8): 1652 doi: 10.3390/app9081652
|
[12] |
Lin X, Wu J, Zhang T, et al. Self-organization of multiple self-propelling flapping foils: energy saving and increased speed. Journal of Fluid Mechanics, 2020, 884: R1
|
[13] |
Lin X, He G, He X, et al. Hydrodynamic studies on two wiggling hydrofoils in an oblique arrangement. Acta Mechanica Sinica, 2018, 34(3): 446-451 doi: 10.1007/s10409-017-0732-1
|
[14] |
Lin X, He G, He X, et al. Dynamic response of a semi-free flexible filament in the wake of a flapping foil. Journal of Fluids and Structures, 2018, 83: 40-53 doi: 10.1016/j.jfluidstructs.2018.08.009
|
[15] |
Lin X, Wu J, Zhang T, et al. Phase difference effect on collective locomotion of two tandem autopropelled flapping foils. Physical Review Fluids, 2019, 4(5): 054101 doi: 10.1103/PhysRevFluids.4.054101
|
[16] |
Dewey PA, Boschitsch BM, Moored KW, et al. Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 2013, 732: 29-46 doi: 10.1017/jfm.2013.384
|
[17] |
Dewey PA, Quinn DB, Boschitsch BM, et al. Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration. Physics of Fluids, 2014, 26(4): 041903 doi: 10.1063/1.4871024
|
[18] |
Boschitsch BM, Dewey PA, Smits AJ. Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Physics of Fluids, 2014, 26(5): 051901 doi: 10.1063/1.4872308
|
[19] |
Ryuh YS, Yang GH, Liu J, et al. A school of robotic fish for mariculture monitoring in the sea coast. Journal of Bionic Engineering, 2015, 12(1): 37-46 doi: 10.1016/S1672-6529(14)60098-6
|
[20] |
Becker AD, Masoud H, Newbolt JW, et al. Hydrodynamic schooling of flapping swimmers. Nature Communications, 2015, 6(1): 1-8
|
[21] |
裴正楷, 刘俊恺, 陈世明等. 双鱼并排游动时水动力性能研究. 测控技术, 2016, 35(12): 16-20 (Pei ZhengKai, Liu JunKai, Chen ShiMing, et al. Hydrodynamic performance of Beas swimming side by side. Measurement and Control Technology, 2016, 35(12): 16-20 (in Chinese) doi: 10.19708/j.ckjs.2016.12.004
|
[22] |
Vicsek T, Zafeiris A. Collective motion. Physics Reports, 2012, 517(3-4): 71-140 doi: 10.1016/j.physrep.2012.03.004
|
[23] |
Graham RT, Witt MJ, Castellanos DW, et al. Satellite tracking of manta rays highlights challenges to their conservation. PloS One, 2012, 7(5): e36834 doi: 10.1371/journal.pone.0036834
|
[24] |
Tangorra JL, Davidson SN, Hunter IW, et al. The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 2007, 32(3): 533-550 doi: 10.1109/JOE.2007.903362
|
[25] |
Fish FE, Schreiber CM, Moored KW, et al. Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace, 2016, 3(3): 20 doi: 10.3390/aerospace3030020
|
[26] |
Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2008, 211: 1541-1558 doi: 10.1242/jeb.015644
|
[27] |
Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2009, 211(10): 576-592
|
[28] |
张栋. 牛鼻鲼游动过程中柔性变形对水动力影响研究. [ 博士学位论文 ]. 西安: 西北工业大学, 2020Zhang Dong. Flexible deformation effect on the hydrodynamic performance of a rhinoptera javanica in different swimming behaviors. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese))
|
[29] |
Han P, Pan Y, Liu G, et al. Propulsive performance and vortex wakes of multiple tandem foils pitching in-line. Journal of Fluids and Structures, 2022, 108: 103422 doi: 10.1016/j.jfluidstructs.2021.103422
|
[30] |
Zarruk GA, Brandner PA, Pearce BW, et al. Experimental study of the steady fluid-structure interaction of flexible hydrofoils. Journal of Fluids and Structures, 2014, 51: 326-343 doi: 10.1016/j.jfluidstructs.2014.09.009
|