EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂向双蝠鲼变攻角滑翔水动力性能研究

高鹏骋 刘冠杉 黄桥高 潘光 马云龙

高鹏骋, 刘冠杉, 黄桥高, 潘光, 马云龙. 垂向双蝠鲼变攻角滑翔水动力性能研究. 力学学报, 2023, 55(1): 62-69 doi: 10.6052/0459-1879-22-353
引用本文: 高鹏骋, 刘冠杉, 黄桥高, 潘光, 马云龙. 垂向双蝠鲼变攻角滑翔水动力性能研究. 力学学报, 2023, 55(1): 62-69 doi: 10.6052/0459-1879-22-353
Gao Pengcheng, Liu Guanshan, Huang Qiaogao, Pan Guang, Ma Yunlong. Investigation on the hydrodynamic performance of a vertical double manta ray gliding with variable attack angles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 62-69 doi: 10.6052/0459-1879-22-353
Citation: Gao Pengcheng, Liu Guanshan, Huang Qiaogao, Pan Guang, Ma Yunlong. Investigation on the hydrodynamic performance of a vertical double manta ray gliding with variable attack angles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 62-69 doi: 10.6052/0459-1879-22-353

垂向双蝠鲼变攻角滑翔水动力性能研究

doi: 10.6052/0459-1879-22-353
基金项目: 国家自然科学基金(51879220, 52001260), 国家重点研发计划(2020YFB1313201), 中央高校基本科研业务费专项基金(3102019HHZY030019, 3102020HHZY030018)和西北工业大学博士论文创新基金(CX2022025)资助项目
详细信息
    通讯作者:

    黄桥高, 教授, 主要研究方向为推进器水动力学、新型水中兵器和新概念水下航行器水动力关键技术及应用. E-mail: huangqiaogao@nwpu.edu.cn

  • 中图分类号: O352

INVESTIGATION ON THE HYDRODYNAMIC PERFORMANCE OF A VERTICAL DOUBLE MANTA RAY GLIDING WITH VARIABLE ATTACK ANGLES

  • 摘要: 为了探究垂向间距和攻角对双蝠鲼在沿垂向分布集群滑翔时的水动力性能影响, 根据蝠鲼的实际外形建立了蝠鲼计算模型, 设置了4种间距排布即0.25, 0.5, 0.75, 1倍体厚排布以及9种攻角状态即−8°~8°, 随后借助Fluent软件进行了双蝠鲼变攻角、变垂向间距的集群滑翔数值模拟, 结合流场压力云图以及速度云图对集群系统平均升/阻力以及集群中各单体的升/阻力进行了分析. 数值计算结果表明: 双蝠鲼沿垂向分布在攻角范围为−8°~8°进行集群滑翔时系统平均阻力均高于单体滑翔时所受阻力. 单体在集群滑翔过程中获得减阻收益, 当双蝠鲼以负攻角集群滑翔时, 下方蝠鲼阻力减小, 且垂向间距越小, 减阻效果越明显; 当以正攻角集群滑翔时, 上方蝠鲼获得减阻收益. 当双蝠鲼以负攻角滑翔时, 系统平均升力大于单体滑翔时所受升力; 当双蝠鲼以负攻角滑翔时, 系统平均升力小于单体滑翔时所受升力, 系统平均升力几乎不受垂向间距影响. 下方蝠鲼升力始终大于上方蝠鲼升力, 但随着垂向间距的增大, 升力差距逐渐减小.

     

  • 图  1  蝠鲼模型

    Figure  1.  Manta ray model

    图  2  计算域设置

    Figure  2.  Calculation domain setting

    图  3  网格细节及无关性验证

    Figure  3.  Grid detail and independence verification

    图  4  方法验证

    Figure  4.  Method validation

    图  5  0.25TL垂向间距时不同攻角下的阻力/升力系数

    Figure  5.  Drag/lift coefficient at different attack angles at 0.25TL vertical distance

    图  6  0.25TL垂向间距时不同攻角下的压力/速度云图

    Figure  6.  Pressure/velocity diagram at different attack angles at 0.25TL vertical distance

    图  7  0.5TL垂向间距时不同攻角下的阻力/升力系数

    Figure  7.  Drag/lift coefficient at different attack angles at 0.5TL vertical distance

    图  8  0.5TL垂向间距时不同攻角下的压力云图

    Figure  8.  Pressure diagram at different attack angles at 0.5TL vertical distance

    图  9  0.75TL垂向间距时不同攻角下的阻力/升力系数

    Figure  9.  Drag/lift coefficient at different attack angles at 0.75TL vertical distance

    图  10  0.75TL垂向间距时不同攻角下的压力云图

    Figure  10.  Pressure diagram at different attack angles at 0.75TL vertical distance

    11  1TL垂向间距时不同攻角下的阻力/升力系数

    11.  Drag/lift coefficient at different attack angles at 1TL vertical distance

    图  12  1TL垂向间距时不同攻角下的压力/速度云图

    Figure  12.  Pressure/velocity diagram at different attack angles at 1TL vertical distance

  • [1] Li L, Ravi S, Xie G, et al. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 2021, 477(2249): 20200810 doi: 10.1098/rspa.2020.0810
    [2] Weihs D. Hydromechanics of fish schooling. Nature, 1973, 241(5387): 290-291 doi: 10.1038/241290a0
    [3] Chen SY, Fei YHJ, Chen YC, et al. The swimming patterns and energy-saving mechanism revealed from three fish in a school. Ocean Engineering, 2016, 122: 22-31 doi: 10.1016/j.oceaneng.2016.06.018
    [4] Daghooghi M, Borazjani I. The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Bioinspiration & Biomimetics, 2015, 10(5): 056018
    [5] Deng J, Shao XM. Hydrodynamics in a diamond-shaped fish school. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 438-442 doi: 10.1016/S1001-6058(06)60090-5
    [6] Chung MH. Hydrodynamic performance of two-dimensional undulating foils in triangular formation. Journal of Mechanics, 2011, 27(2): 177-190 doi: 10.1017/jmech.2011.21
    [7] Tian FB, Wang W, Wu J, et al. Swimming performance and vorticity structures of a mother-calf pair of fish. Computers & Fluids, 2016, 124: 1-11
    [8] Gazzola M, Tchieu AA, Alexeev D, et al. Learning to school in the presence of hydrodynamic interactions. Journal of Fluid Mechanics, 2016, 789: 726-749 doi: 10.1017/jfm.2015.686
    [9] Novati G, Verma S, Alexeev D, et al. Synchronisation through learning for two self-propelled swimmers. Bioinspiration & Biomimetics, 2017, 12(3): 036001
    [10] 王亮. 仿生鱼群自主游动及控制的研究. [ 博士论文 ]. 南京: 河海大学, 2007

    Wang Liang. Numerical simulation and control of self-propelled swimming of bionics fish school. [PhD Thesis]. Nanjing: Hehai University, 2007 (in Chinese)
    [11] Li S, Li C, Xu L, et al. Numerical simulation and analysis of fish-like robots swarm. Applied Sciences, 2019, 9(8): 1652 doi: 10.3390/app9081652
    [12] Lin X, Wu J, Zhang T, et al. Self-organization of multiple self-propelling flapping foils: energy saving and increased speed. Journal of Fluid Mechanics, 2020, 884: R1
    [13] Lin X, He G, He X, et al. Hydrodynamic studies on two wiggling hydrofoils in an oblique arrangement. Acta Mechanica Sinica, 2018, 34(3): 446-451 doi: 10.1007/s10409-017-0732-1
    [14] Lin X, He G, He X, et al. Dynamic response of a semi-free flexible filament in the wake of a flapping foil. Journal of Fluids and Structures, 2018, 83: 40-53 doi: 10.1016/j.jfluidstructs.2018.08.009
    [15] Lin X, Wu J, Zhang T, et al. Phase difference effect on collective locomotion of two tandem autopropelled flapping foils. Physical Review Fluids, 2019, 4(5): 054101 doi: 10.1103/PhysRevFluids.4.054101
    [16] Dewey PA, Boschitsch BM, Moored KW, et al. Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 2013, 732: 29-46 doi: 10.1017/jfm.2013.384
    [17] Dewey PA, Quinn DB, Boschitsch BM, et al. Propulsive performance of unsteady tandem hydrofoils in a side-by-side configuration. Physics of Fluids, 2014, 26(4): 041903 doi: 10.1063/1.4871024
    [18] Boschitsch BM, Dewey PA, Smits AJ. Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Physics of Fluids, 2014, 26(5): 051901 doi: 10.1063/1.4872308
    [19] Ryuh YS, Yang GH, Liu J, et al. A school of robotic fish for mariculture monitoring in the sea coast. Journal of Bionic Engineering, 2015, 12(1): 37-46 doi: 10.1016/S1672-6529(14)60098-6
    [20] Becker AD, Masoud H, Newbolt JW, et al. Hydrodynamic schooling of flapping swimmers. Nature Communications, 2015, 6(1): 1-8
    [21] 裴正楷, 刘俊恺, 陈世明等. 双鱼并排游动时水动力性能研究. 测控技术, 2016, 35(12): 16-20 (Pei ZhengKai, Liu JunKai, Chen ShiMing, et al. Hydrodynamic performance of Beas swimming side by side. Measurement and Control Technology, 2016, 35(12): 16-20 (in Chinese) doi: 10.19708/j.ckjs.2016.12.004
    [22] Vicsek T, Zafeiris A. Collective motion. Physics Reports, 2012, 517(3-4): 71-140 doi: 10.1016/j.physrep.2012.03.004
    [23] Graham RT, Witt MJ, Castellanos DW, et al. Satellite tracking of manta rays highlights challenges to their conservation. PloS One, 2012, 7(5): e36834 doi: 10.1371/journal.pone.0036834
    [24] Tangorra JL, Davidson SN, Hunter IW, et al. The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 2007, 32(3): 533-550 doi: 10.1109/JOE.2007.903362
    [25] Fish FE, Schreiber CM, Moored KW, et al. Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta. Aerospace, 2016, 3(3): 20 doi: 10.3390/aerospace3030020
    [26] Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2008, 211: 1541-1558 doi: 10.1242/jeb.015644
    [27] Borazjani I, Sotiropoulos F. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2009, 211(10): 576-592
    [28] 张栋. 牛鼻鲼游动过程中柔性变形对水动力影响研究. [ 博士学位论文 ]. 西安: 西北工业大学, 2020

    Zhang Dong. Flexible deformation effect on the hydrodynamic performance of a rhinoptera javanica in different swimming behaviors. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese))
    [29] Han P, Pan Y, Liu G, et al. Propulsive performance and vortex wakes of multiple tandem foils pitching in-line. Journal of Fluids and Structures, 2022, 108: 103422 doi: 10.1016/j.jfluidstructs.2021.103422
    [30] Zarruk GA, Brandner PA, Pearce BW, et al. Experimental study of the steady fluid-structure interaction of flexible hydrofoils. Journal of Fluids and Structures, 2014, 51: 326-343 doi: 10.1016/j.jfluidstructs.2014.09.009
  • 加载中
图(13)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  166
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-10-01
  • 网络出版日期:  2022-10-02
  • 刊出日期:  2023-01-04

目录

    /

    返回文章
    返回