EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可拓决策法的车辆自适应避撞控制方法研究

陈翔 程硕 赵万忠 王春燕 蒋睿

陈翔, 程硕, 赵万忠, 王春燕, 蒋睿. 基于可拓决策法的车辆自适应避撞控制方法研究. 力学学报, 2023, 55(1): 213-222 doi: 10.6052/0459-1879-22-347
引用本文: 陈翔, 程硕, 赵万忠, 王春燕, 蒋睿. 基于可拓决策法的车辆自适应避撞控制方法研究. 力学学报, 2023, 55(1): 213-222 doi: 10.6052/0459-1879-22-347
Chen Xiang, Cheng Shuo, Zhao Wanzhong, Wang Chunyan, Jiang Rui. Extension-decision-based adaptive collision avoidance control for vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 213-222 doi: 10.6052/0459-1879-22-347
Citation: Chen Xiang, Cheng Shuo, Zhao Wanzhong, Wang Chunyan, Jiang Rui. Extension-decision-based adaptive collision avoidance control for vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 213-222 doi: 10.6052/0459-1879-22-347

基于可拓决策法的车辆自适应避撞控制方法研究

doi: 10.6052/0459-1879-22-347
基金项目: 国家自然科学基金(52002211)和江苏省重点研发计划(BE2022053-3)资助项目
详细信息
    作者简介:

    通讯作者: 陈翔, 副研究员, 主要研究方向为车辆动力学与控制. E-mail: chenxiang21@nuaa.edu.cn

    通讯作者:

    赵万忠, 教授, 主要研究方向为车辆线控底盘与自动驾驶技术. E-mail: zwz@nuaa.edu.cn

  • 中图分类号: U463.33

EXTENSION-DECISION-BASED ADAPTIVE COLLISION AVOIDANCE CONTROL FOR VEHICLES

  • 摘要: 车辆的避撞控制可以有效避免或缓解车辆的碰撞事故, 是自动驾驶汽车的关键控制技术之一. 各种交通条件、不确定的道路附着系数以及复杂的液压制动执行系统都会降低避撞控制的有效性. 因此, 本文提出了一种基于可拓决策法的自适应避撞控制, 该控制方法对路面附着系数具有自适应性, 并能够精确控制制动系统的制动液压力. 首先, 设计了滑模观测器来估计轮胎纵向力, 并基于观测得到的轮胎纵向力, 进一步提出带遗忘因子的递推最小二乘法估计道路附着系数. 其次, 基于递推最小二乘法的估计值, 提出了基于路面附着系数自适应调节的自适应避撞控制方法, 该方法基于可拓决策法的先决判定决定当前时刻应采用何种避撞控制策略, 即采用可拓决策方法判断进行点刹预警制动、全制动或者不制动. 再次, 通过对执行系统-电控液压制动系统进行精确的液压控制, 实现主动减速控制效果. 最后, 采用软件联合仿真手段对上述方法进行了验证, 结果表明所提出的算法在避撞行驶工况中具有良好的避撞效果.

     

  • 图  1  纵向车辆动力学模型

    Figure  1.  The longitudinal vehicle dynamics model

    图  2  各轮胎纵向力与纵向滑移率的关系

    Figure  2.  The relationship between the longitudinal tire force and longitudinal slip ratio of each tire

    图  3  ACAC的框架图

    Figure  3.  The framework of the proposed ACAC

    图  4  二维可拓集的3个域

    Figure  4.  Three domains of the two-dimensional extension set

    图  5  装有各种传感器和设备的试验车

    Figure  5.  The experiment car with various sensors and equipment

    图  6  ADC方案

    Figure  6.  The scheme of the proposed ADC

    图  7  增压和减压速率的校准结果

    Figure  7.  The calibration result of the supercharging and decompression rate

    图  8  CarSim中的一种紧急避撞场景

    Figure  8.  A collision avoidance emergency scenario in CarSim

    图  9  前方车辆与自身车辆间的纵向速度和距离

    Figure  9.  The longitudinal velocity and distance between the preceding and ego vehicle

    图  10  实际和估计的轮胎纵向力

    Figure  10.  The actual and estimated longitudinal tire force

    图  11  实际和估计的路面摩擦系数

    Figure  11.  The actual and estimated road friction coefficient

    图  12  避撞策略

    Figure  12.  The collision avoidance strategy

    图  13  预期和实际的纵向加速度

    Figure  13.  The desired and actual longitudinal acceleration

    图  14  四轮的轮缸液压压力

    Figure  14.  The wheel cylinder hydraulic pressure of four wheels

    表  1  系统主要参数表

    Table  1.   Main parameters of system

    Direct measurement statesObserved states
    tire rotation rate ${\omega _{ij}}$road adhesion coefficient $\mu $
    longitudinal acceleration $\dot u$tire longitudinal force ${F_{xij}}$
    longitudinal velocity $u$tire vertical force${F_{zi}}$
    下载: 导出CSV
  • [1] Organization WH, Global status report on road safety 2015//World Health Organization, 2015
    [2] Sohrabi S, Khodadadi A, Mousavi M, et al. Quantifying the automated vehicle safety performance: A scoping review of the literature, evaluation of methods, and directions for future research. Accident Analysis & Prevention, 2021, 152: 106003
    [3] Cheng S, Li L, Chen J. Fusion algorithm design based on adaptive sckf and integral correction for side-slip angle observation. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5754-5763
    [4] Zhang XY, Wang P, Ling JM, et al. Real-time nonlinear predictive controller design for drive-by-wire vehicle lateral stability with dynamic boundary conditions. Fundamental Research, 2022, 2(1): 131-143
    [5] Shi Y, Li H, Fang H, et al. Guest editorial focused section on advanced control and navigation for marine mechatronic systems. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1117-1120
    [6] Gordon TJ, Lidberg M. Automated driving and autonomous functions on road vehicles. Vehicle System Dynamics, 2015, 53(7): 985-994
    [7] Li X, Sun Z, Cao D, et al. Real-time trajectory planning for autonomous urban driving: framework, algorithms, and verifications. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 740-753
    [8] Xiong L, Yu Z, Wang Y, et al. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation. Vehicle System Dynamics, 2012, 50(6): 831-846
    [9] Hu J, Wang Y, Fujimoto H, et al. Robust yaw stability control for in-wheel motor electric vehicles. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1360-1370
    [10] 宋家成, 闫茂德, 杨盼盼等. 基于数据驱动的鲁棒反步自适应巡航控制. 浙江大学学报(工学版), 2022, 56(3): 485-493 (Song Jiacheng, Yan Maode, Yang Panpan, et al. Robust backstepping adaptive cruise control based on data-drive. Journal of Zhejiang University(Engineering Science), 2022, 56(3): 485-493 (in Chinese)
    [11] 兰凤崇, 刘迎节, 陈吉清等. 可变附着系数路面上的自动紧急制动避撞安全策略研究. 汽车工程, 2021, 43(7): 1105-1112 (Lan Fengchong, Liu Yingjie, Chen Jiqing, et al. Research on safety strategy for collision avoidance by automatic emergency braking on a road with varying adhesion coefficient. Automotive Engineering, 2021, 43(7): 1105-1112 (in Chinese) doi: 10.19562/j.chinasae.qcgc.2021.07.018
    [12] Liang J, Lu Y, Yin G, et al. A distributed integrated control architecture of AFS and DYC based on MAS for distributed drive electric vehicles. IEEE Transactions on Vehicular Technology, 2021, 99: 1
    [13] 毛营忠, 冯智勇, 郭会茹. 考虑多性能约束的车辆主动前轮转向静态输出反馈控制. 上海交通大学学报, 2022, 56(2): 156-164 (Mao Yingzhong, Feng Zhiyong, Guo Huiru. Static output feedback control of vehicle active front steering considering multiple performance constraints. Journal of Shanghai Jiaotong University, 2022, 56(2): 156-164 (in Chinese)
    [14] 施国标, 张洪泉, 王帅等. 商用车电液复合转向系统的车道保持策略. 中国公路学报, 2021, 34(9): 101-110 (Shi Guobiao, Zhang Hongquan, Wang Shuai, et al. Lane-keeping assistance strategy for integrated electric-hydraulic steering system of commercial vehicles. China Journal of Highway and Transport, 2021, 34(9): 101-110 (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.09.008
    [15] Yoshida H, Awano S, Nagai M, et al. Target following brake control for collision avoidance assist of active interface vehicle//2006 SICE-ICASE International Joint Conference, 2006: 4436-4439
    [16] Han IC, Luan BC, Hsieh FC. Development of autonomous emergency braking control system based on road friction//2014 IEEE International Conference on Automation Science and Engineering (CASE), 2014: 933-937
    [17] Jhonghyun A, Baehoon C, Taehun H, et al. A novel rear-end collision warning system using neural network ensemble//2016 IEEE Intelligent Vehicles Symposium (IV), 2016: 1265-1270
    [18] Lu XY, Wang J. Multiple-vehicle longitudinal collision avoidance and impact mitigation by active brake control//2012 IEEE Intelligent Vehicles Symposium, 2012: 680-685
    [19] Lee IH, Luan BC. Design of autonomous emergency braking system based on impedance control for 3-car driving scenario. SAE Technical Paper, 2016, 2016-01-1453
    [20] Santos MCP, Rosales CD, Sarcinelli-Filho M, et al. A novel null-space-based uav trajectory tracking controller with collision avoidance. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2543-2553
    [21] Ji J, Khajepour A, Melek WW, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952-964
    [22] Koglbauer I, Holzinger J, Eichberger A, et al. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust. Traffic Injury Prevention, 2018, 19(3): 332-337
    [23] Rajamani R, Phanomchoeng G, Piyabongkarn D, et al. Algorithms for real-time estimation of individual wheel tire-road friction coefficients. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 1183-1195
    [24] Liu YH, Li T, Yang YY, et al. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm. Mechanical Systems and Signal Processing, 2017, 88: 25-35
    [25] 路永婕, 韩寅锋, 王翠艳等. 基于三轴重型全驱电动汽车路面附着系数估计. 石家庄铁道大学学报(自然科学版), 2021, 34(4): 40-45 (Lu Yongjie, Han Yinfeng, Wang Cuiyan, et al. Estimation of road surface adhesion coefficient based on three-axle heavy-duty all-drive electric vehicle. Journal of Shijiazhuang Tiedao University(Natural Science Edition) , 2021, 34(4): 40-45 (in Chinese) doi: 10.13319/j.cnki.sjztddxxbzrb.20210171
    [26] Zhang Z , Liu CG , Ma XJ , et al. Driving force coordinated control of an 8 x8 in-wheel motor drive vehicle with tire-road friction coefficient identification[J]. Defence Technology, 2022, 18(1): 14
    [27] Chen X, Li S, Li L, et al. Longitudinal-lateral-cooperative estimation algorithm for vehicle dynamics states based on adaptive-square-root-cubature-Kalman-filter and similarity-principle. Mechanical Systems and Signal Processing, 2022, 176: 109162 doi: 10.1016/j.ymssp.2022.109162
    [28] Yang X, Li J, Miao H, et al. Hydraulic pressure control and parameter optimization of integrated electro-hydraulic brake system//Brake Colloqaium and ixhibition-35th Annnal, 2017
    [29] Hutter M, Leeman P, Hottiger G, et al. Force control for active chassis balancing. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 613-622
    [30] Nie Y, Liu Y, Cheng S, et al. Unified brake service by a hierarchical controller for active deceleration control in an electric and automated vehicle. Energies, 2017, 10(12): 2052
    [31] Gustafsson F. Slip-based tire-road friction estimation. Automatica, 1997, 33(6): 1087-1099
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  104
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 录用日期:  2022-11-11
  • 网络出版日期:  2022-11-12
  • 刊出日期:  2023-01-04

目录

    /

    返回文章
    返回