EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁补偿实验的微重力下毛细管内动态流动特性研究

金宇鹏 肖明堃 邱一男 王天祥 杨光 黄永华 吴静怡

金宇鹏, 肖明堃, 邱一男, 王天祥, 杨光, 黄永华, 吴静怡. 基于磁补偿实验的微重力下毛细管内动态流动特性研究. 力学学报, 2022, 54(12): 3408-3417 doi: 10.6052/0459-1879-22-346
引用本文: 金宇鹏, 肖明堃, 邱一男, 王天祥, 杨光, 黄永华, 吴静怡. 基于磁补偿实验的微重力下毛细管内动态流动特性研究. 力学学报, 2022, 54(12): 3408-3417 doi: 10.6052/0459-1879-22-346
Jin Yupeng, Xiao Mingkun, Qiu Yi’nan, Wang Tianxiang, Yang Guang, Huang Yonghua, Wu Jingyi. Investigation on fluid dynamics in a capillary tube under microgravity based on the magnetic compensation experiment. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3408-3417 doi: 10.6052/0459-1879-22-346
Citation: Jin Yupeng, Xiao Mingkun, Qiu Yi’nan, Wang Tianxiang, Yang Guang, Huang Yonghua, Wu Jingyi. Investigation on fluid dynamics in a capillary tube under microgravity based on the magnetic compensation experiment. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3408-3417 doi: 10.6052/0459-1879-22-346

基于磁补偿实验的微重力下毛细管内动态流动特性研究

doi: 10.6052/0459-1879-22-346
基金项目: 国家自然科学基金 (51936006, 52276013)和航天低温推进剂技术国家重点实验室基金(SKLTSCP202005, 02021A16297)资助项目
详细信息
    作者简介:

    杨光, 副教授, 主要研究方向: 多相流动与低温传热. E-mail: y_g@sjtu.edu.cn

  • 中图分类号: TQ028.8

INVESTIGATION ON FLUID DYNAMICS IN A CAPILLARY TUBE UNDER MICROGRAVITY BASED ON THE MAGNETIC COMPENSATION EXPERIMENT

  • 摘要: 微重力环境下流体由于受到毛细力的主导作用, 其流动特性相较于地面常重力环境有着本质上的不同. 基于磁补偿原理, 在地面上建立了具有高可调性的微重力模拟流动实验台, 通过将实验数据与理论模型进行对比的方法验证了实验系统的准确性, 并对不同等效重力水平下竖直毛细管内水基磁流体的动态流动行为进行研究. 实验数据与两种采用不同动态接触角模型的理论模型解的平均相对偏差分别为7.1%和13.7%, 验证了利用磁补偿方法开展微重力流动研究的可行性. 进一步, 定量研究了管径大小、等效重力水平以及接触角等因素对毛细管内动态流动特性的影响. 在近似零重力的环境下, 可将动态流动过程分成三个阶段: 即液面高度h先后与t2, t, $\sqrt t $成线性关系. 管径对毛细爬升过程的影响复杂, 其对流动的影响并不随着管径呈线性变化, 在不同的流动阶段对流速的影响规律也不相同. 等效重力加速度越大, 水基磁流体在管内的毛细爬升能力越差, 且越难观察到第一毛细爬升阶段的存在. 相同条件下, 流体的前进接触角越大, 其毛细爬升速率越小.

     

  • 图  1  磁补偿实验装置图片

    Figure  1.  The magnetic compensation experimental device

    图  2  实验腔体内部示意图

    Figure  2.  Schematic diagram of the inside of the experimental chamber

    图  3  磁流体在不同表面上的前进接触角测量

    Figure  3.  Forward contact angle measurement of magnetic fluid on different surfaces

    图  4  管径2 mm石英玻璃管内水基磁流体爬升示意图

    Figure  4.  Schematic diagram of water-based magnetic fluid climbing in a quartz glass tube with a diameter of 2 mm

    图  5  0 (±5.0 × 10−4)g环境下1, 2, 4 mm管径石英玻璃管实验结果与理论模型的对比

    Figure  5.  Comparison of experimental results and theoretical models in quartz glass tubes for diameters of 1,2,4 mm in 0 (±5.0 × 10−4)g environment

    图  6  不同管径石英玻璃管内的毛细爬升过程

    Figure  6.  Capillary climbing process in quartz glass tubes with different diameters

    图  7  不同管径石英玻璃管内的毛细爬升速度−时间的无量纲化

    Figure  7.  Dimensionless representation of velocity-time for quartz glass tubes with different diameters

    图  8  等效重力水平对管内毛细爬升的影响(重力水平不确定度±5.0 × 10−4g)

    Figure  8.  Influence of equivalent environmental gravity level on capillary climb in tubes (the gravity uncertainty is ±5.0 × 10−4g)

    图  9  0.15 s内不同等效环境重力下的石英玻璃管内毛细爬升过程(重力水平不确定度 ±5.0 × 10−4g)

    Figure  9.  Capillary climbing process in quartz glass tubes under different equivalent environmental gravity within 0.15 s (the gravity uncertainty is ±5.0 × 10−4g)

    图  10  不同材质的管内毛细爬升

    Figure  10.  Capillary climb in tubes with different materials

    表  1  体积比为40/60的水基磁流体/去离子水溶液的物性参数

    Table  1.   Physical properties of water-based magnetic fluid/deionized water solution with a volume ratio of 40/60

    Physical property
    (measurement error)
    ρ/(kg·m−3)
    (2%)
    σ/(mN·m−1)
    (2%)
    ν/(mPa·s)
    (2%)
    αa1/(°)
    (±5%)
    αa2/(°)
    (±5%)
    Result116336.20.936688
    下载: 导出CSV
  • [1] Doherty M, Gaby J, Salerno L, et al. Cryogenic fluid management technology for moon and mars missions//AIAA Space 2009 Conference & Exposition, 2009: 6532
    [2] 魏月兴, 陈小前, 黄奕勇. 内角流动及其在卫星贮箱设计中的应用. 中国科学: 技术科学, 2011, 41(9): 1218-1224 (Wei Yuexing, Chen Xiaoqian, Huang Yiyong. Interior corner flow theory and its application to the satellite propellant management device design. Scientia Sinica: Technologica, 2011, 41(9): 1218-1224 (in Chinese) doi: 10.1360/ze2011-41-9-1218
    [3] 王磊, 厉彦忠, 马原等. 液体推进剂在轨加注技术与加注方案. 航空动力学报, 2016, 31(8): 2002-2009 (Wang Lei, Li Yanzhong, Ma Yuan, et al. On-orbit refilling technologies and schemes of liquid propellant. Journal of Aerospace Power, 2016, 31(8): 2002-2009 (in Chinese) doi: 10.13224/j.cnki.jasp.2016.08.027
    [4] Weislogel MM, Lichter S. Capillary flow in an interior corner. Journal of Fluid Mechanics, 1998, 373: 349-378 doi: 10.1017/S0022112098002535
    [5] Xu SH, Wang CX, Sun ZW, et al. The influence of contact line velocity and acceleration on the dynamic contact angle: An experimental study in microgravity. International Journal of Heat & Mass Transfer, 2011, 54(9-10): 2222-2225
    [6] 李京浩, 陈小前, 黄奕勇. 基于内角流动的板式表面张力贮箱内推进剂流动过程研究. 国防科技大学学报, 2012, 34(4): 18-21 (Li Jinghao, Chen Xiaoqian, Huang Yiyong. A study of propellant flow in the vane-type surface tension tank based on interior corner flow. Journal of National University of Defense Technology, 2012, 34(4): 18-21 (in Chinese) doi: 10.3969/j.issn.1001-2486.2012.04.004
    [7] 李永强, 刘玲. 微重力下变内角毛细驱动流研究. 物理学报, 2014, 63(21): 214704 (Li Yongqiang, Liu Lin. A study of capillary flow in variable interior corners under microgravity. Acta Physica Sinica, 2014, 63(21): 214704 (in Chinese)
    [8] Zouganelis GD, Gkigkitzis I, Haranas I. Enhanced capillary rise of wetting liquids in reduced gravitational shielding under microgravity conditions. Physics International, 2014, 5(2): 140-151 doi: 10.3844/pisp.2014.140.151
    [9] 陈上通, 吴笛, 王佳等. 微重力下成一定夹角平板间的表面张力驱动流动的研究. 力学学报, 2022, 54(2): 326-335 (Chen Shangtong, Wu Di, Wang Jia, et al. Capillary rise of liquid between plates with a certain angle under microgravity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 326-335 (in Chinese)
    [10] Brittin WE. Liquid rise in a capillary tube. Journal of Applied Physics, 1946, 17(1): 37-44 doi: 10.1063/1.1707633
    [11] Sparrow EM, Lin SH, Lundgren TS. Flow development in the hydrodynamic entrance region of tubes and ducts. Physics of Fluids, 1964, 7(3): 338-347 doi: 10.1063/1.1711204
    [12] Schmidt FW, Zeldin B. Laminar flows in inlet sections of tubes and ducts. AIChE Journal, 1969, 15(4): 612-614 doi: 10.1002/aic.690150425
    [13] Zhmud BV, Tiberg F, Hallstensson K. Dynamics of capillary rise. Journal of Colloid & Interface Science, 2000, 228(2): 263-269
    [14] Levine S, Reed P, Watson EJ, et al. A theory of the rate of rise of a liquid in a capillary. Colloid and Interface Science, 1976, 3: 403-419
    [15] Stange M, Dreyer ME, Rath HJ. Capillary driven flow in circular cylindrical tubes. Physics of Fluids, 2003, 15(9): 2587-2601 doi: 10.1063/1.1596913
    [16] 徐升华, 周宏伟, 王彩霞等. 微重力条件下不同截面形状管中毛细流动的实验研究. 物理学报, 2013, 62(13): 134702 (Xu Shenghua, Zhou Hongwei, Wang Caixia, et al. Experimental study on the capillary flow in tubes of different shapes under microgravity condition. Acta Physica Sinica, 2013, 62(13): 134702 (in Chinese) doi: 10.7498/aps.62.134702
    [17] 李永强, 张晨辉, 刘玲等. 微重力下圆管毛细流动解析近似解研究. 物理学报, 2013, 62(4): 044701 (Li Yongqiang, Zhang Chenhui, Liu Lin, et al. The analytical approximate solutions of capillary flow in circular tubes under microgravity. Acta Physica Sinica, 2013, 62(4): 044701 (in Chinese) doi: 10.7498/aps.62.044701
    [18] Wang C, Xu S, Sun Z, et al. Influence of contact angle and tube size on capillary-driven flow under microgravity. AIAA Journal, 2015, 47(11): 2642-2648
    [19] 周宏伟, 王林伟, 徐升华等. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703 (Zhou Hongwei, Wang Linwei, Xu Shenghua, et al. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703 (in Chinese) doi: 10.7498/aps.64.124703
    [20] Wang Q, Li L, Gu J, et al. A dynamic model for the oscillatory regime of liquid rise in capillaries. Chemical Engineering Science, 2019, 209: 115220 doi: 10.1016/j.ces.2019.115220
    [21] Chen S, Ye Z, Duan L, et al. Capillary driven flow in oval tubes under microgravity. Physics of Fluids, 2021, 33(3): 032111 doi: 10.1063/5.0040993
    [22] 韦明罡, 万士昕, 姚康庄等. 国家微重力实验室落塔及微重力实验研究. 载人航天, 2007(4): 1-3, 22 (Wei Minggang, Wan Shixin, Yao Kangzhuang, et al. Drop tower and microgravity experiment research of national microgravity laboratory. Manned Spaceflight, 2007(4): 1-3, 22 (in Chinese) doi: 10.16329/j.cnki.zrht.2007.04.004
    [23] 姜秀杰, 刘波, 于世强等. 探空火箭的发展现状及趋势. 科技导报, 2009, 27(23): 101-110 (Jiang Xiujie, Liu Bo, Yu Shiqiang, et al. Development status and trend of sounding rocket. Science & Technology Review, 2009, 27(23): 101-110 (in Chinese) doi: 10.3321/j.issn:1000-7857.2009.23.021
    [24] 杨彪, 胡添元. 空间站微重力环境研究与分析. 载人航天, 2014, 20(2): 178-183 (Yang Biao, Hu Tianyuan. Study and analysis of microgravity environment onboard manned space station. Manned Spaceflight, 2014, 20(2): 178-183 (in Chinese) doi: 10.3969/j.issn.1674-5825.2014.02.015
    [25] Weislogel MM, Nardin CL. Capillary driven flow along interior corners formed by planar walls of varying wettability. Microgravity-Science and Technology, 2005, 17(3): 45-55 doi: 10.1007/BF02872087
    [26] Chen YK, Weislogel MM, Bolleddula DA. Capillary flow in cylindrical containers with rounded interior corners//45th AIAA Aerospace Science Meeting and Exhibit, 2007: 745
    [27] Wang CX, Xu SH, Sun ZW, et al. A study of the influence of initial liquid volume on the capillary flow in an interior corner under microgravity. International Journal of Heat and Mass Transfer, 2010, 53(9-10): 1801-1807 doi: 10.1016/j.ijheatmasstransfer.2010.01.009
    [28] 张泽宇. 磁补偿微重力下磁流体毛细流动特性仿真和实验研究. [博士论文]. 上海: 上海交通大学, 2019

    Zhang Zeyu. Simulation and experimental study of magnetofluid capillary flow under magnetic compensation microgravity. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese))
    [29] 张泽宇, 黄永华, 梁益涛等. 磁场力非均匀度对液氧磁补偿微重力自由界面的影响. 真空与低温, 2019, 25(6): 372-378 (Zhang Zeyu, Huang Yonghua, Liang Yitao, et al. Impact of magnetic force inhomogeneity on free surface of liquid oxygen under magnetically compensated microgravity. Vacuum and Cryogenics, 2019, 25(6): 372-378 (in Chinese) doi: 10.3969/j.issn.1006-7086.2019.06.004
    [30] 肖明堃, 黄永华, 吴静怡等. 非均匀磁场力作用下微重力液氧气液界面特性. 制冷技术, 2020, 40(6): 1-11 (Xiao Mingkun, Huang Yonghua, Wu Jingyi, et al. Gas-liquid interface behavior of liquid oxygen in compensated microgravity field with inhomogeneous magnetic force. Chinese Journal of Refrigeration Technology, 2020, 40(6): 1-11 (in Chinese) doi: 10.3969/j.issn.2095-4468.2020.06.101
    [31] 沈逸, 张泽宇, 梁益涛等. 磁补偿微重力环境实现及磁流体微重力内角流动研究. 化工学报, 2020, 71(8): 3490-3499 (Shen Yi, Zhang Zeyu, Liang Yitao, et al. Realization of microgravity environment by magnetic compensation and study on interior corner flow of magnetic fluid in microgravity. CIESC Journal, 2020, 71(8): 3490-3499 (in Chinese)
    [32] Wunenburger R, Chatain D, Garrabos Y, et al. Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: Application to weightless conditions. Physical Review E, 2000, 62(1): 469-476 doi: 10.1103/PhysRevE.62.469
    [33] Quettier L, H Félice, Mailfert A, et al. Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts. European Physical Journal Applied Physics, 2005, 32(3): 167-175 doi: 10.1051/epjap:2005074
    [34] Nikolayev VS, Garrabos Y, Lecoutre C, et al. Magnetic gravity compensation. Microgravity Science and Technology, 2011, 23(2): 113-122 doi: 10.1007/s12217-010-9217-6
    [35] Nikolayev VS, Garrabos Y, Lecoutre C, et al. Evaporation condensation-induced bubble motion after temperature gradient set-up. Comptes Rendus Mécanique, 2017, 345(1): 35-46
    [36] Hamedani HM, Davis LR. An experimental investigation of the properties of magnetic fluid in thermal rejection applications//Proceedings of Intersociety Energy Conversion Engineering Conference, ASME, New York. 1988: 359-364
    [37] Qiang L, Xuan Y, Jian W. Experimental investigations on transport properties of magnetic fluids. Experimental Thermal & Fluid Science, 2006, 30(2): 109-116
    [38] Flament C, Lacis S, Bacri JC, et al. Measurements of ferrofluid surface tension in confined geometry. Physical Review E, 1996, 53(5): 4801-4806 doi: 10.1103/PhysRevE.53.4801
    [39] 许春龙. 磁重力补偿下磁流体的自然对流与沸腾传热实验研究. [博士论文]. 上海: 上海大学, 2015

    Xu Chunlong. Study on natural convection and boiling heat transfer of magnetic fluid under magnetic gravity compensation. [PhD Thesis]. Shanghai: Shanghai University, 2015 (in Chinese))
    [40] 胡臻尚, 吴张永, 莫子勇等. 水基NiFe2O4磁流体在无磁场时的沉降稳定性. 化工进展, 2017, 36(9): 3414-3421 (Hu Zhenshang, Wu Zhangyong, Mo Ziyong, et al. Sedimentation stability of water-based NiFe2O4 ferrofluid in the absence of magnetic field. Chemical Industry and Engineering Progress, 2017, 36(9): 3414-3421 (in Chinese)
    [41] 陈文, 吴张永 张莲芝等. 环烷NiFe2O4磁流体的制备及有磁场沉降稳定性. 化工进展, 2019, 38(6): 2665-2673 (Chen Wen, Wu Zhangyong, Zhang Zhilian, et al. Preparation of oil-based NiFe2O4 magnetic fluid and stability of magnetic field settlement. Chemical Industry and Engineering Progress, 2019, 38(6): 2665-2673 (in Chinese)
    [42] Jiang TS, Soo-Gun OH, Slattery JC. Correlation for dynamic contact angle. Journal of Colloid and Interface Science, 1979, 69(1): 74-77 doi: 10.1016/0021-9797(79)90081-X
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  63
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 录用日期:  2022-10-18
  • 修回日期:  2021-11-30
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回