EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近场动力学系统中波传播特性的探究

朱竞高 任晓丹

朱竞高, 任晓丹. 近场动力学系统中波传播特性的探究. 力学学报, 2023, 55(1): 134-147 doi: 10.6052/0459-1879-22-342
引用本文: 朱竞高, 任晓丹. 近场动力学系统中波传播特性的探究. 力学学报, 2023, 55(1): 134-147 doi: 10.6052/0459-1879-22-342
Zhu Jinggao, Ren Xiaodan. Study of wave dispersion and propagation in peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 134-147 doi: 10.6052/0459-1879-22-342
Citation: Zhu Jinggao, Ren Xiaodan. Study of wave dispersion and propagation in peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 134-147 doi: 10.6052/0459-1879-22-342

近场动力学系统中波传播特性的探究

doi: 10.6052/0459-1879-22-342
基金项目: 国家自然科学基金(52078361), 上海市教委创新计划(2017-01-07-00-07-E00006)和上海市科技计划(21DZ1203401)资助项目
详细信息
    通讯作者:

    任晓丹, 教授, 主要研究方向为固体计算力学、结构非线性分析. E-mail: rxdtj@tongji.edu.cn

  • 中图分类号: O313

STUDY OF WAVE DISPERSION AND PROPAGATION IN PERIDYNAMICS

  • 摘要: 近场动力学是一类基于非局部思想的新固体力学方法, 其采用积分形式的控制方程, 自然地适用于极端载荷下材料破碎和裂纹发展的模拟, 被广泛用于国防安全等领域的研究. 但是, 非局部性会引入色散效应, 对波的传播产生不利影响, 制约其对断裂等固体行为的捕捉能力. 为此, 采用谱分析方法, 对近场动力学系统的色散行为进行了全面的研究. 发现相比于低频成分, 高频成分的色散关系呈现出振荡趋势和零能模式, 色散问题更为严重. 高频域的色散行为还随波的传播方向发生改变, 呈现出沿45°的对称性. 而近场动力学系统本身缺乏数值耗散, 无法抑制色散问题带来的不利影响. 因此, 从引入数值耗散的角度出发, 在合理保留传统近场动力学理论框架的基础上, 建立了黏性引入的控制方程. 并考虑固体中常见的体积变形和对高频成分的选择性抑制, 构造了相应的黏性力态. 最后, 在数值研究中模拟了极端载荷下激波的产生, 以探究波的间断性对色散行为的影响. 发现间断性强的波表现出更为显著的色散行为, 呈现出Gibbs不稳定性. 这些均能有效地被黏性力态所抑制, 验证了所提方法的正确性. 这为在近场动力学系统中实现对波传播过程的正确捕捉, 获得正确的固体行为提供了重要参考, 从而为国防安全领域研究提供了技术支撑和借鉴.

     

  • 图  1  近场动力学模型示意图

    Figure  1.  The schematic of peridynamics

    图  2  一维近场动力学系统的色散关系

    Figure  2.  The dispersion relation of 1D peridynamics

    图  3  一维近场动力学系统的频率关系

    Figure  3.  The frequency relation of 1D peridynamics

    图  4  二维键基模型色散关系的对称性

    Figure  4.  The symmetry of dispersion relation for 2D peridynamics

    图  5  二维近场动力学系统的色散关系

    Figure  5.  The dispersion relation of 2D peridynamics

    图  6  不同方向频散行为的雷达图

    Figure  6.  Radar chart of dispersion behavior in different directions

    图  7  数值耗散对不同频率成分的抑制作用

    Figure  7.  The dissipation effect on different frequencies

    图  8  应变率的运动学表示

    Figure  8.  The kinematic expression of strain rate

    图  9  带理论解的一维正弦波传播结果对比

    Figure  9.  Comparative study of 1D sine wave propagation problem with theoretical result

    图  10  带理论解的一维方波传播结果对比

    Figure  10.  Comparative study of 1D square wave propagation problem with theoretical result

    图  11  一维波传播算例示意图 (单位: mm)

    Figure  11.  The schematic of numerical example for 1D wave propagation (unit: mm)

    图  12  沿一维杆长方向的位移分布

    Figure  12.  Displacement distribution along the 1D bar

    图  13  沿一维杆长方向的应力分布

    Figure  13.  Stress distribution along the 1D bar

    图  14  A点的应力波时程

    Figure  14.  Time history of stress wave at point A

    图  15  A点应力波的能量谱密度曲线

    Figure  15.  Energy spectrum density of stress wave at point A

    图  16  沿一维杆长方向的位移分布

    Figure  16.  Displacement distribution along the 1D bar

    图  17  沿一维杆长方向的应力分布

    Figure  17.  Stress distribution along the 1D bar

    图  18  A点的应力波时程

    Figure  18.  Time history of stress wave at point A

    图  19  A点应力波的能量谱密度曲线

    Figure  19.  Energy spectrum density of stress wave at point A

    图  20  二维波传播算例示意图 (单位: mm)

    Figure  20.  The schematic of numerical example for 2D wave propagation (unit: mm)

    图  21  二维圆环的压力云图

    Figure  21.  The pressure cloud map of 2D ring

  • [1] 高光发. 波动力学基础. 北京: 科学出版社, 2019

    Gao Guangfa. Fundamentals of Wave Dynamics. Beijing: National Scientific Press, 2019 (in Chinese)
    [2] 李永池. 波动力学. 合肥: 中国科学技术大学出版社, 2015

    Li Yongchi. Wave Dynamics. Hefei: University of Science and Technology of China Press, 2015 (in Chinese)
    [3] Cox BN, Gao H, Gross D, et al. Modern topics and challenges in dynamic fracture. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 565-596 doi: 10.1016/j.jmps.2004.09.002
    [4] Freund LB. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1998
    [5] Ravi-Chandar K. Dynamic Fracture. New York: Elsevier, 2004
    [6] Liang Y, Zhang X, Liu Y. Extended material point method for the three-dimensional crack problems. International Journal for Numerical Methods in Engineering, 2021, 122(12): 3044-3069 doi: 10.1002/nme.6653
    [7] Wu J, Wang D, Lin Z, et al. An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture. Computational Particle Mechanics, 2020, 7(2): 193-207 doi: 10.1007/s40571-019-00240-5
    [8] Imtiaz H, Liu B. An efficient and accurate framework to determine the failure surface/envelop in composite lamina. Composites Science and Technology, 2021, 201: 108475 doi: 10.1016/j.compscitech.2020.108475
    [9] Bobaru F, Foster JT, Geubelle PH, et al. Handbook of Peridynamic Modeling. CRC Press, 2016
    [10] Hu Y, Feng G, Li S, et al. Numerical modelling of ductile fracture in steel plates with non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 2020, 225: 106446 doi: 10.1016/j.engfracmech.2019.04.020
    [11] Yang D, He X, Liu X, et al. A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation. International Journal of Mechanical Sciences, 2020, 184: 105830 doi: 10.1016/j.ijmecsci.2020.105830
    [12] Xia Y, Meng X, Shen G, et al. Isogeometric analysis of cracks with peridynamics. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113700 doi: 10.1016/j.cma.2021.113700
    [13] Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209 doi: 10.1016/S0022-5096(99)00029-0
    [14] Yu H, Chen X, Sun Y. A generalized bond-based peridynamic model for quasi-brittle materials enriched with bond tension–rotation–shear coupling effects. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113405 doi: 10.1016/j.cma.2020.113405
    [15] Silling SA, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007, 88(2): 151-184 doi: 10.1007/s10659-007-9125-1
    [16] Behzadinasab M, Foster JT. A semi-lagrangian constitutive correspondence framework for peridynamics. Journal of the Mechanics and Physics of Solids, 2020, 137: 103862 doi: 10.1016/j.jmps.2019.103862
    [17] Zhang H, Qiao P. A two-dimensional ordinary state-based peridynamic model for elastic and fracture analysis. Engineering Fracture Mechanics, 2020, 232: 107040 doi: 10.1016/j.engfracmech.2020.107040
    [18] Zhou XP, Wang YT, Shou YD, et al. A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Engineering Fracture Mechanics, 2018, 188: 151-183 doi: 10.1016/j.engfracmech.2017.07.031
    [19] Zhu QZ, Ni T. Peridynamic formulations enriched with bond rotation effects. International Journal of Engineering Science, 2017, 121: 118-129 doi: 10.1016/j.ijengsci.2017.09.004
    [20] Gu X, Zhang Q, Madenci E. Non-ordinary state-based peridynamic simulation of elastoplastic deformation and dynamic cracking of polycrystal. Engineering Fracture Mechanics, 2019, 218: 106568 doi: 10.1016/j.engfracmech.2019.106568
    [21] Liu Z, Bie Y, Cui Z, et al. Ordinary state-based peridynamics for nonlinear hardening plastic materials' deformation and its fracture process. Engineering Fracture Mechanics, 2019, 223: 106782
    [22] 王涵, 黄丹, 徐业鹏等. 非常规态型近场动力学热黏塑性模型及其应用. 力学学报, 2018, 50(4): 810-819 (Wang Han, Huang Dan, Xu Yepeng, et al. Non-ordinary state-based peridynamic thermal-viscoplastic model and its application. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 810-819 (in Chinese) doi: 10.6052/0459-1879-18-113
    [23] Wang H, Xu YP, Hang D. A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture. International Journal of Mechanical Sciences, 2019, 159: 336-344 doi: 10.1016/j.ijmecsci.2019.06.008
    [24] 胡祎乐, 余音, 汪海. 基于近场动力学理论的层压板损伤分析方法. 力学学报, 2013, 45(4): 624-628 (Hu Yile, Yu Yin, Wang Hai. Damage analysis method for laminates based on peridynamic theory. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 624-628 (in Chinese) doi: 10.6052/0459-1879-12-368
    [25] 章青, 顾鑫, 郁杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟. 力学学报, 2016, 48(1): 56-63 (Zhang Qing, Gu Xin, Yu Yangtian. Peridynamics simulation for dynamic response of granular materials under impact loading. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63 (in Chinese) doi: 10.6052/0459-1879-15-291
    [26] Wu P, Yang F, Chen Z, et al. Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete. Engineering Fracture Mechanics, 2021, 253: 107863 doi: 10.1016/j.engfracmech.2021.107863
    [27] Huang XP, Kong XZ, Chen ZY, et al. Peridynamics modelling of dynamic tensile failure in concrete. International Journal of Impact Engineering, 2021, 155: 103918 doi: 10.1016/j.ijimpeng.2021.103918
    [28] Bažant ZP, Luo W, Chau VT, et al. Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. Journal of Applied Mechanics, 2016, 83(11): 111004 doi: 10.1115/1.4034319
    [29] Butt SN, Timothy JJ, Meschke G. Wave dispersion and propagation in state-based peridynamics. Computational Mechanics, 2017, 60(5): 725-738 doi: 10.1007/s00466-017-1439-7
    [30] Wildman RA. Discrete micromodulus functions for reducing wave dispersion in linearized peridynamics. Journal of Peridynamics and Nonlocal Modeling, 2019, 1(1): 56-73 doi: 10.1007/s42102-018-0001-0
    [31] Gu X, Zhang Q, Huang D, et al. Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Engineering Fracture Mechanics, 2016, 160: 124-137 doi: 10.1016/j.engfracmech.2016.04.005
    [32] Li S, Jin Y, Lu H, et al. Wave dispersion and quantitative accuracy analysis of bond-based peridynamic models with different attenuation functions. Computational Materials Science, 2021, 197: 110667 doi: 10.1016/j.commatsci.2021.110667
    [33] Wildman RA, Gazonas GA. A finite difference-augmented peridynamics method for reducing wave dispersion. International Journal of Fracture, 2014, 190(1): 39-52
    [34] Alebrahim R, Packo P, Zaccariotto M, et al. Improved wave dispersion properties in 1D and 2D bond-based peridynamic media. Computational Particle Mechanics, 2021, 9: 597-614
    [35] Zhou G, Hillman M. A non-ordinary state-based Godunov-peridynamics formulation for strong shocks in solids. Computational Particle Mechanics, 2020, 7(2): 365-375 doi: 10.1007/s40571-019-00254-z
    [36] Ren XD, Zhu JG. Temporally stabilized peridynamics methods for shocks in solids. Computational Mechanics, 2021, 69: 489-504
    [37] Zhu F, Zhao J. Peridynamic modelling of blasting induced rock fractures. Journal of the Mechanics and Physics of Solids, 2021, 153: 104469 doi: 10.1016/j.jmps.2021.104469
    [38] 黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用. 力学进展, 2010, 40(4): 448-459 (Huang Dan, Zhang Qing, Qiao Pizhong, et al. A review of peridynamics (PD) method and its application. Advances in mechanics, 2010, 40(4): 448-459 (in Chinese) doi: 10.6052/1000-0992-2010-4-J2010-002
    [39] Jia F, Gao Z, Don WS. A spectral study on the dissipation and dispersion of the WENO schemes. Journal of Scientific Computing, 2015, 63(1): 49-77 doi: 10.1007/s10915-014-9886-1
    [40] Ren B, Fan H, Bergel GL, et al. A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Computational Mechanics, 2015, 55(2): 287-302 doi: 10.1007/s00466-014-1101-6
    [41] Monaghan JJ. On the problem of penetration in particle methods. Journal of Computational physics, 1989, 82(1): 1-15 doi: 10.1016/0021-9991(89)90032-6
    [42] Silling SA, Parks ML, Kamm JR, et al. Modeling shockwaves and impact phenomena with Eulerian peridynamics. International Journal of Impact Engineering, 2017, 107: 47-57 doi: 10.1016/j.ijimpeng.2017.04.022
    [43] Lai X, Liu L, Li S, et al. A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. International Journal of Impact Engineering, 2018, 111: 130-146 doi: 10.1016/j.ijimpeng.2017.08.008
    [44] Caramana EJ, Shashkov MJ, Whalen PP. Formulations of artificial viscosity for multi-dimensional shock wave computations. Journal of Computational Physics, 1998, 144(1): 70-97 doi: 10.1006/jcph.1998.5989
    [45] Landshoff R. A numerical method for treating fluid flow in the presence of shocks. Los Alamos National Lab NM, 1955
    [46] Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005, 83(17-18): 1526-1535
    [47] Achenbach J. Wave Propagation in Elastic Solids. New York: Elsevier, 2012
  • 加载中
图(21)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  119
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-11-28
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2023-01-04

目录

    /

    返回文章
    返回