EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡识别技术及其在船用螺旋桨伴流场中的应用

杨琳 郑兴

杨琳, 郑兴. 涡识别技术及其在船用螺旋桨伴流场中的应用. 力学学报, 2022, 54(11): 1-10 doi: 10.6052/0459-1879-22-339
引用本文: 杨琳, 郑兴. 涡识别技术及其在船用螺旋桨伴流场中的应用. 力学学报, 2022, 54(11): 1-10 doi: 10.6052/0459-1879-22-339
Yang Lien, Zheng Xing. Vortex identification technology and its application in the wake field of marine propeller. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 1-10 doi: 10.6052/0459-1879-22-339
Citation: Yang Lien, Zheng Xing. Vortex identification technology and its application in the wake field of marine propeller. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 1-10 doi: 10.6052/0459-1879-22-339

涡识别技术及其在船用螺旋桨伴流场中的应用

doi: 10.6052/0459-1879-22-339
基金项目: 国家重点研究开发项目(2020YFB1506701)、国家自然科学基金(51739001, 51879051)、浙江省远岸风电技术重点实验室开放基金(ZOE20200007)、黑龙江省自然科学基金(LH2020E071)资助
详细信息
    作者简介:

    杨琳, 博士研究生, 主要研究方向: 湍流大涡模拟、转子类器械流场. E-mail: yanglin@hrbeu.edu.cn

  • 中图分类号: O3

VORTEX IDENTIFICATION TECHNOLOGY AND ITS APPLICATION IN THE WAKE FIELD OF MARINE PROPELLER

  • 摘要: 涡识别是很重要的流体问题, 为了在船用螺旋桨伴流场中寻找一种合理的涡识别方法, 本文结合实践, 研究了六种涡识别技术理论, 其中使用Burgers涡流和Lamb-Oseen涡流作了必要的解释, 讨论了各种识别方法的优缺点. 局部低压标准比较直观, 但深究其黏性和非定常影响后, 明显不足; 迹线或流线显然不能满足伽利略不变性, 会使辨别变得混乱; 涡度大小需要规定其阈值, 具有一定不确定性, 且也会识别不是涡的涡片; 速度梯度张量$ \boldsymbol{T} $的复特征值也会有识别不出的区域; 速度梯度张量的第二不变量$ {Q} $标准和对称张量$ \left({\boldsymbol{S}}^{2} + {\boldsymbol{\varOmega }}^{2}\right) $的第二特征值$ {\boldsymbol{\lambda }}_{2} $标准能更好地识别涡核, 这两种标准有时等效. 螺旋桨伴流场的数值模拟是在开源软件OpenFOAM平台上实现的, 湍流大涡模型由一种局部动态$ k $方程建模, 此模型优于动态Smagorinsky模型. 最终的结果显示: 对于船用螺旋桨伴流场中的涡, 采用速度梯度张量$ \boldsymbol{T} $的第二不变量$ Q $和对称张量$ \left({\boldsymbol{S}}^{2} + {\boldsymbol{\varOmega }}^{2}\right) $的第二特征值$ {\boldsymbol{\lambda }}_{2} $的结果基本一致, 而最小压力标准、流线或迹线标准、涡度值标准和张量$ \boldsymbol{T} $的复特征值标准都存在一定的缺陷, 不适用于船用螺旋桨伴流场中的涡识别.

     

  • 图  1  螺旋桨几何

    Figure  1.  Geometry of blade, hub and shaft

    图  2  叶片沿径向相对弦长和扭角分布

    Figure  2.  Distributions of relative chord length and twist angle along radial direction

    图  3  计算域及初始边界条件

    Figure  3.  Computational domain and initial boundary conditions

    图  4  网格划分示意

    Figure  4.  View of meshing

    图  5  相对涡度和压力分布(实线为涡度; 虚线为压力, 黑虚线为$ {\omega }_{0} = 1 $, 向下橙紫绿黄蓝$ {\omega }_{0} $分别为$ 2 \sim 6 $)

    Figure  5.  Relative vorticity and pressure distribution (solid line is vorticity; dotted line is pressure; black dotted line is $ {\omega }_{0} = 1 $; downward orange-purple-green-yellow-blue lines are $ {\omega }_{0} = 2 \sim 6 $ respectively)

    图  6  Lamb-Oseen涡在不同参考系下的流线(快速点比任何一点的速度都快)

    Figure  6.  Streamline of vortex under different reference systems (the speed at the fast point is faster than that at any point)

    图  7  涡度大小等值面

    Figure  7.  Contours of vorticity magnitude

    图  8  涡核识别$ Q = 0 $

    Figure  8.  Vortex core identification $ Q = 0 $

    图  9  涡核识别$ {\lambda }_{2} = 0 $

    Figure  9.  Vortex core identification $ {\lambda }_{2} = 0 $

    表  1  涡识别方法

    Table  1.   Methods of vortex identification

    No.Criterions of identifying vortex
    1 Local minimum pressure
    2 Pathline or streamline
    3 Vorticity magnitude
    4 Complex eigenvalue of tensor $ \mathit{T} $
    5 Second invariant $ Q $ or kinematic vorticity number $ {N}_{k} $
    6 Eigenvalue of sym tensor $ \left({\mathit{S}}^{2} + {\mathit{\Omega }}^{2}\right) $
    下载: 导出CSV

    表  2  计算区不同域网格尺度

    Table  2.   Overall cell scales in different regions of computational domain

    Cell scales for about total 8.5 million cells
    Region 0 (background grid)$ 0.125 D $
    Region 1 (dashed line)$ 0.0156 D $
    Region 2 (most refinement)$ 0.00781 D $
    下载: 导出CSV

    表  3  基于负$ {\lambda }_{2} $和正$ Q $标准识别涡核对比

    Table  3.   Comparison of vortex core identifing results based on negative $ {\lambda }_{2} $ and positive $ Q $ criteria

    $ {\lambda }_{1} $$ {\lambda }_{2} $$ {\lambda }_{3} $$\displaystyle \sum {\lambda }_{\mathrm{i} }$$ -{\lambda }_{2} $$ + Q $
    $ + $$ - $$ - $$ - $yesyes
    $ + $$ - $$ - $$ + $yesno
    $ + $$ + $$ - $$ - $noyes
    $ + $$ + $$ + $$ + $nono
    下载: 导出CSV
  • [1] Tennekes H, Lumley JL. A First Course in Turbulence. Cambridge, Massachusetts, and London, England: the MIT Press, 1972: 59-103
    [2] Hussain F, Melander MV. Studies in Turbulence: Understanding Turbulence Via Vortex Dynamics. Springer-Verlag New York Inc, 1992: 157-178
    [3] Lamb SH. Hydrodynamics. Sixth edition. The United States of America: the Syndics of the Cambridge University Press, 1975: 202-249
    [4] Lugt HJ. Recent Developments in Theoretical and Experimental Fluid Mechanics: The Dilemma of Defining a Vortex. Berlin Heidelberg: Springer-Verlag, 1979: 309-321
    [5] Chong MS, Perry AE, Cantwell BJ. A general classification of three-dimensional flow fields. Physics of Fluids A:Fluid Dynamics, 1990, 2(5): 765-777 doi: 10.1063/1.857730
    [6] Hunt JCR, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. In: Proceeding of the Summer Program, Center for Turbulence Research, Stanford University, 1988: 193-208
    [7] Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995, 285: 69-94 doi: 10.1017/S0022112095000462
    [8] Cantwell BJ. Organized motion in turbulent flow. Annual Review of Fluid Mechanics, 1981, 13: 457-515 doi: 10.1146/annurev.fl.13.010181.002325
    [9] Lumley JL. Transition and Turbulence: Coherent Structures in Turbulence. Academic Press Inc, 1981: 215-242
    [10] Hussain AKMF. Coherent structures and turbulence. Journal of Fluid Mechanics, 1986, 173: 303-356 doi: 10.1017/S0022112086001192
    [11] Mumford JC. The structure of the large eddies in fully developed turbulent shear flows: Part 1: The plane jet. Journal of Fluid Mechanics, 1982, 118: 241-268 doi: 10.1017/S0022112082001062
    [12] Mumford JC. The structure of the large eddies in fully developed turbulent shear flows: Part 2: The plane wake. Journal of Fluid Mechanics, 1983, 137: 447-456 doi: 10.1017/S0022112083002505
    [13] Blackwelder R. On the role of phase information in conditional sampling. The Physics of Fluids, 1977, 20(10): S232-242 doi: 10.1063/1.861736
    [14] Fiedler HE, Mensing P. The plane turbulent shear layer with periodic excitation. Journal of Fluid Mechanics, 1985, 150: 281-309 doi: 10.1017/S0022112085000131
    [15] Ferré JA, Giralt F. Pattern-recognition analysis of the velocity field in plane turbulent wakes. Journal of Fluid Mechanics, 1989, 198: 27-64 doi: 10.1017/S0022112089000029
    [16] Kim J. Turbulence Structures Associated with the Bursting Event. NASA Ames Research Center, Moffett Field, California 94035, 1984, NASA Technical Memorandum 85944.
    [17] Hussain AKMF, Zaman KBMQ. Vortex pairing in a circular jet under controlled excitation: Part 2: Coherent structure dynamics. Journal of Fluid Mechanics, 1980, 101: 493-544 doi: 10.1017/S0022112080001772
    [18] Cantwell B, Coles D. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of Fluid Mechanics, 1983, 136: 321-374 doi: 10.1017/S0022112083002189
    [19] Tso J, Hussain F. Organized motions in a fully developed turbulent axisymmetric jet. Journal of Fluid Mechanics, 1989, 203: 425-448 doi: 10.1017/S0022112089001539
    [20] Hussain AKMF, Hayakawa M. Eduction of large-scale organized structures in a turbulent plane wake. Journal of Fluid Mechanics, 1987, 180: 193-229 doi: 10.1017/S0022112087001782
    [21] Robinson SK. The kinetics of turbulent boundary layer structure. [PhD Thesis]. Stanford University, 1991
    [22] 杨越. 湍流中的涡识别与涡动力学//第十届全国流体力学青年研讨会, 2017

    Yang Yue. Vortex identification and vortex dynamics in turbulence //The 10 th National Youth Symposium on fluid mechanics, 2017 (in Chinese)
    [23] 王义乾, 桂南. 第三代涡识别方法及其应用综述. 水动力学研究与进展: A辑, 2019, 34(4): 413-429

    Wang Yiqian, Gui Nan. A review of the third-generation vortex identification method and its applications. Chinese Journal of Hydrodynamics: Series A, 2019, 34 (4): 413-429 (in Chinese)
    [24] 刘超群. Liutex-涡定义和第三代涡识别方法. 空气动力学学报, 2020, 38(3): 405-431, 478

    Liu Chaoqun. Liutex-third generation of vortex definition and identification methods. Acta Aerodynamics Sinica, 2020, 38 (3): 405-431, 478 (in Chinese)
    [25] Pang Chao, Yang Hua, Gao Zhenghong, et al. Enhanced adaptive mesh refinement method using advanced vortex identification sensors in wake flow. Aerospace Science and Technology, 2021, 115(Aug.): 106796.1-106796.11
    [26] Bai Xiaorui, Cheng Huaiyu, Bin Ji. Liutex and Third Generation of Vortex Definition and Identification: On the Comparison of Liutex Method with Other Vortex Identification Methods in a Confined Tip-Leakage Cavitating Flow. Springer, Cham, 2021: 139-155
    [27] Zhang Fan, Appiah D, Chen Ke, et al. Investigation on the flow behavior of side channel pumps based on vortex identification. Chinese Journal of Mechanical Engineering, 2021, 34(6): 1-18
    [28] Zhang Yanghui, Hu Xingjun, Lan Wei, et al. Application of Omega vortex identification method in cavity buffeting noise. Journal of Hydrodynamics, 2021, 33(2): 259-270 doi: 10.1007/s42241-021-0034-8
    [29] Wang Yiqian, Gao Yisheng, Xu Hongyi, et al. Liutex theoretical system and six core elements of vortex identification. Journal of Hydrodynamics, 2020, 32(2): 197-211 doi: 10.1007/s42241-020-0018-0
    [30] Asmaee Z, Delda S. Introducing vortices in the continuum using direct and indirect methods. Physical Review D, 2022, 105: 096020.1-096020.15
    [31] Fu Shenming, Zhang Jingping, Tang Huan, et al. A new mesoscale-vortex identification metric: restricted vorticity and its application. Environmental Research Letters, 2020, 15(2020): 124053.1-124053.10
    [32] Yusuke N, Takuji N, Takenori H, et al. Identification of the vortex around a vehicle by considering the pressure minimum. Journal of Visualization, 2020, 23(5): 793-804 doi: 10.1007/s12650-020-00665-8
    [33] Ye Zhixian, Chen Qian, Li Binghua, et al. Flow structure segmentation for vortex identification using butterfly convolutional neural networks. International Journal of Modern Physics B, 2020, 34(14/16): 2040121.1-2040121.5
    [34] Yang Ke, Wu Shiqian, Zhang Hui, et al. Lagrangian-averaged vorticity deviation of spiraling blood flow in the heart during isovolumic contraction and ejection phases. Medical & Biological Engineering & Computing, 2021, 59(7-8): 1417-1430
    [35] Yu Yifei, Shrestha P, Alvarez O, et al. Liutex and Third Generation of Vortex Definition and Identification: Incorrectness of the Second-Generation Vortex Identification Method and Introduction to Liutex. Springer, Cham, 2021: 37-56
    [36] Kim WW, Menon S. A new dynamic one-equation subgrid-scale model for large eddy simulation//33 rd Aerospace Sciences Meeting and Exhibit, 1995: 1-9
    [37] Sagaut P. Large Eddy Simulation for Incompressible Flows. Second Edition. Springer-Verlag Berlin Heidelberg GmbH, 2006: 39-73
    [38] Bridges DH. A Detailed Study of the Flowfield of a Submarine Propeller During a Crashback Maneuver. Department of Aerospace Engineering, Mississippi State University, 2004
    [39] Moffatt HK. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics, 1964, 18: 1-18 doi: 10.1017/S0022112064000015
    [40] Panton RL. Incompressible Flow. 2nd edition. New York: Wiley, 1996: 837
    [41] Melander MV, Hussain F. Cut-and-connect of two antiparallel vortex tubes: a new cascade mechanism//Seventh International Symposium on Turbulent Shear Flows 7. Springer-Verlag Berlin Heidelberg, 1991: 9-16
    [42] Metcalfe RW. Coherent structures in a turbulent mixing layer: a comparison between numerical simulations and experiments. Turbulent Shear Flows, 1985: 5
    [43] Bisset DK, Antonia RA, Browne LWB. Spatial organization of large structures in the turbulent far wake of a cylinder. Journal of Fluid Mechanics, 1990, 218(-1): 439-461 doi: 10.1017/S0022112090001069
    [44] Jimenez J, Moin P, Moser R, et al. Ejection mechanisms in the sublayer of a turbulent channel. The Physics of Fluids, 1988, 31(6): 1311-1313 doi: 10.1063/1.866721
    [45] Truesdell CA. The Kinematics of Vorticity. Bulletin of the American Mathematical Society, 1949, 55(3): 296-296
    [46] Melander MV, Hussain F. Polarized vorticity dynamics on a vortex column. Physics of Fluids A:Fluid Dynamics, 1993, 5(8): 1992-2003 doi: 10.1063/1.858826
    [47] Courant R, Hilbert D. Methods of Mathematical Physics, Vol. I. Physics Today, 1954, 7(5): 17-17
    [48] Crowdy DG. A Note on the Linear Stability of Burgers Vortex. Studies in Applied Mathematics, 1996, 100: 107-126
    [49] Fabre D, Sipp D, Jacquin L. Kelvin waves and the singular modes of the Lamb-Oseen vortex. Journal of Fluid Mechanics, 2006, 551: 235-274 doi: 10.1017/S0022112005008463
    [50] Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press, 2002: 266-273
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-09-20
  • 网络出版日期:  2022-09-16

目录

    /

    返回文章
    返回