EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤炭地下气化关键力学问题的数值研究进展

刘曰武 方惠军 李龙龙 葛腾泽 郑太毅 刘丹路 丁玖阁

刘曰武, 方惠军, 李龙龙, 葛腾泽, 郑太毅, 刘丹路, 丁玖阁. 煤炭地下气化关键力学问题的数值研究进展. 力学学报, 2023, 55(2): 1-17 doi: 10.6052/0459-1879-22-331
引用本文: 刘曰武, 方惠军, 李龙龙, 葛腾泽, 郑太毅, 刘丹路, 丁玖阁. 煤炭地下气化关键力学问题的数值研究进展. 力学学报, 2023, 55(2): 1-17 doi: 10.6052/0459-1879-22-331
Liu Yuewu, Fang Huijun, Li Longlong, Ge Tengze, Zheng Taiyi, Liu Danlu, Ding Jiuge. Recent progress on numerical research of key mechanical problems during underground coal gasification. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-17 doi: 10.6052/0459-1879-22-331
Citation: Liu Yuewu, Fang Huijun, Li Longlong, Ge Tengze, Zheng Taiyi, Liu Danlu, Ding Jiuge. Recent progress on numerical research of key mechanical problems during underground coal gasification. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 1-17 doi: 10.6052/0459-1879-22-331

煤炭地下气化关键力学问题的数值研究进展

doi: 10.6052/0459-1879-22-331
基金项目: 中国石油天然气股份有限公司科技项目“煤炭地下气化关键技术研究与先导试验”(编号: 2019E-25)”
详细信息
    作者简介:

    刘曰武:为共同第一作者

    通讯作者:

    李龙龙, 副研究员, 主要研究方向为渗流力学及煤炭地下气化. E-mail: lilonglong@imech.ac.cn

  • 中图分类号: O35

RECENT PROGRESS ON NUMERICAL RESEARCH OF KEY MECHANICAL PROBLEMS DURING UNDERGROUND COAL GASIFICATION

  • 摘要: 煤炭资源的清洁高效利用已成为“双碳”背景下科学研究的重要方向和新课题. 在众多相关技术中, 煤炭地下气化技术近年来得到快速发展并展现出巨大潜力. 然而, 由于室内实验和现场试验的实施成本非常高, 气化机理认识和控制运行工艺优化方面的研究均受到很大限制. 近年来, 运行成本低、操作简单、实施周期短的数值模拟方法成为重要的研究工具, 得到越来越多的关注. 由于煤炭地下气化过程极其复杂, 数值模拟方法在数学建模和数值求解方面均面临巨大挑战. 对此, 本文开展了以下工作: 对煤炭地下气化过程进行了详细分析, 阐明各个运行空间的物质和关键问题, 厘清煤炭地下气化的本质; 归纳出流体动力学问题、热力学问题、材料应力问题以及化学反应动力学问题等4类关键力学问题; 详细介绍每个关键力学问题数值研究的最新成果和发展历程; 介绍煤炭地下气化数值研究的工程应用, 并指出其发展趋势. 本文工作对推动煤炭地下气化数值方法的发展以及指导我国煤炭地下气化先导试验设计和现场实施有积极的理论意义.

     

  • 图  1  煤炭地下气化过程中运行空间划分及每个运行空间内的物质

    Figure  1.  Operating space partition and the materials in each space during UCG

    图  2  煤炭地下气化的关键问题

    Figure  2.  Key problems during UCG

    图  3  地面沉降简化示意图

    Figure  3.  Illustration of surface subsidence

    图  4  煤炭地下气化过程中化学反应

    Figure  4.  The chemical reactions during UCG

    图  5  气化腔边壁损伤和脱落示意图

    Figure  5.  Illustration of the thermal damage of the wall and rock collapse

    图  6  气化腔模型流体流动示意图(剖面图)[30]

    Figure  6.  Illustration of fluid flow in a gasification model (cross section) [30]

    图  7  气化腔模型应力变化示意图(剖面图)

    Figure  7.  Illustration of stress field in a gasification model (cross section)

    图  8  煤炭地下气化过程中化学反应方程的发展历程图

    Figure  8.  The development of the equations used to describe the chemical reaction during UCG

    图  9  CAVSIM模拟结果验证. (a)为CAVSIM软件所建立模型的示意图; (b)为Centralia部分煤层CRIP现场试验的气化腔测量形状与预测形状; (c)为落基山1号CRIP试验前两个气化腔的氢气和一氧化碳的实际产量与预测产量 [60-61]

    Figure  9.  Validation of CAVSIM. (a) Schematic diagram of a model built in CAVSIM; (b) The measured and predicted shape of a gasifier in a Centralia coal bed that tested with CRIP; (c) The measured rate and predicted rate of H2 and CO of the first two gasifiers during Rocky Mountain 1 CRIP experiment[60-61]

    图  10  UCG-SIM3D模拟结果验证(Hoe Creek III现场试验, 第15天). (a), (b)气化腔的测量与预测形状, 两者有较好一致性; (c)合成气组分含量测量值与预测值[62-64]

    Figure  10.  Validation of UCG-SIM3 D (Hoe Creek III field test, day 15). (a), (b) The measured and predicted shape of the gasifier; (c) The measured and predicted mole fraction of the syngas[62-64]

    表  1  主要的气化反应方程式[40, 49]

    Table  1.   Main chemical reaction equations[40, 49]

    No.ReactionReaction formulaΔH298 K/(kJ·mol−1)
    R1incomplete combustionC + 0.5 O2→CO−111
    R2complete combustionC + O2→CO2−393
    R3steam gasificationC + H2O→CO + H2 + 131
    R4boudouard reactionC + CO2→2 CO + 172
    R5hydrogasificationC + 2 H2→CH4−75
    R6pyrolysisdrycoal→char + volatiles + tar
    R7H2 combustionH2 + 0.5 O2→H2O−242
    R8CO combustionCO + 0.5 O2→CO2−283
    R9O2 combustionCH4 + 2 O2→CO2 + 2 H2O−802
    R10water gas shiftCO + H2O↔CO2 + H2−41
    R11inversed CO methanationCH4 + H2O↔ CO + 3 H2 + 206
    R12CO2 methanationCO2 + 4 H2↔CH4 + 2 H2O−164
    R13inversed methane CO2 reforming2 CO + 2 H2↔ CH4 + CO2−247
    下载: 导出CSV

    表  2  煤炭地下气化的反应分类

    Table  2.   The classification of chemical reactions during UCG

    No.Reaction type
    Reaction sequenceReaction trendReaction directionReactant phase states
    First order reactionSecond order reactionOxidation reactionReduction reactionOne-way reactionIrreversible one-way reactionHomogeneous reactionHeterogeneous reaction
    R1
    R2
    R3
    R4
    R5
    R6
    R7
    R8
    R9
    R10
    R11
    R12
    R13
    下载: 导出CSV

    表  3  煤炭地下气化过程中均相及非均相化学反应速率表达式

    Table  3.   The rate of homogeneous and heterogeneous chemical reactions during UCG

    No.Reaction rate expressionAkαkEk
    R2Kf,1[O2]2.503 × 10171.0179.4
    R3Kf,3[H2O]0.58.593 0.5231.0
    R4Kf,4[CO2]0.50.85930.5211.0
    R5Kf,5[H2]2.337 × 10−61.0150
    R7Kf,7[H2]1/4[O2]2/32.50 × 1018−1167.4
    R8Kf,8[CO][O2]1/43.98 × 10190167.4
    R9Kf,9[CH4]1/2[O2]5/44.40 × 10150125.5
    R10Kf,10[CO][H2O]−Kb,10[CO2][H2]27.8012.6
    R11Kf,11[CH4][H2O]−Kb,11[CO][H2]331.2030.0
    Note: The parameters of pyrolysis reaction vary greatly with different coal quality and are not listed in this table
    下载: 导出CSV
  • [1] Ma H, Chen S, Xue D, et al. Outlook for the coal industry and new coal production technologies. Advances in Geo-Energy Research, 2021, 5(2): 119-120 doi: 10.46690/ager.2021.02.01
    [2] 刘曰武, 高大鹏, 李奇等. 页岩气开采中的若干力学前沿问题. 力学进展, 2019, 49(1): 201901 (Liu Yuewu, Gao Dapeng, Li Qi, et al. Mechanical frontiers in shale-gas development. Advances in Mechanics, 2019, 49(1): 201901 (in Chinese) doi: 10.6052/1000-0992-17-020
    [3] Betts AG. Method of utilizing buried coal. U. S. Patent No. 947608, filed 1906, issued 1910
    [4] Betts AG, Process of gasifying unmined coal. Canadian Patent No. 123068, filed 1909, issued 1910
    [5] Betts AG. An improved process for utilizing unmined coal. UK Patent No. 21674, filed 1909, issued 1910
    [6] Klimenko AY. 2-early developments and inventions in underground coal gasification. in: Underground Coal Gasification & Combustion, 2018: 11-24
    [7] Derbin Y, Walker J, Wanatowski D, et al. Soviet experience of underground coal gasification focusing on surface subsidence. Journal of Zhejiang University-Science A, 2015, 16(10): 839-850 doi: 10.1631/jzus.A1500013
    [8] Thorsness CB, Hill RW, Britten JA. Execution and performance of the CRIP process during the Rocky Mountain 1 UCG field test. Lawrence Livermore National Lab. , CA (USA), 1988
    [9] 朱铭, 徐道一, 孙文鹏等. 世界煤地下气化的快速发展. 自然杂志, 2012, 34(3): 161-166 (Zhu Ming, Xu Daoyi, Sun Wenpeng, et al. Rapid progress of underground coal gasification in the world. Chinese Journal of Nature, 2012, 34(3): 161-166 (in Chinese)
    [10] 马驰, 余力, 梁杰. 中国煤炭地下气化技术的发展. 中国能源, 2003, 158(2): 11-15 (Ma Chi, Yu Li, Liang Jie. Development of UCG of China. Energy of China, 2003, 158(2): 11-15 (in Chinese) doi: 10.3969/j.issn.1003-2355.2003.02.007
    [11] 李怀展. 无井式煤炭地下气化岩层移动机理与控制研究. 江苏: 中国矿业大学, 2017

    Li Huaizhan. Study on the Strata Movement Mechanisms and Control in UCG without Shaft. Jiangsu: China University of Mining and Technology, 2017 (in Chinese)
    [12] Kostur K, Blistanova M. The research of underground coal gasification in laboratory conditions. Petrol Coal, 2009, 51(1): 1-7
    [13] Kapusta K, Wiatowski M, Stanczyk K. An experimental ex-situ study of the suitability of a high moisture ortho-lignite for underground coal gasification (UCG) process. Fuel, 2016, 179: 150-155 doi: 10.1016/j.fuel.2016.03.093
    [14] Gur M, Eskin N, Okutan H, et al. Experimental results of underground coal gasification of Turkish lignite in an ex-situ reactor. Fuel, 2017, 203: 997-1006 doi: 10.1016/j.fuel.2017.03.008
    [15] Winslow AM. Numerical model of coal gasification in a packed bed. Symposium on Combustion, 1977, 16(1): 503-513 doi: 10.1016/S0082-0784(77)80347-0
    [16] Thorsness C, Grens E, Sherwood A. A one dimensional model for in-situ coal gasification. Tech. Rep. UCRL-52523, Lawrence Livermore National Laboratory, Livermore, CA, 1978
    [17] Camp DW. Underground coal gasification research and development in the United States, Lawrence Livermore National Security, LLC under contract No. DE-AC52-07 NA27344 with the U. S. Department of Energy. Editor: Michael S. Blinderman, Alexander Y. Klimenko, Underground Coal Gasification and Combustion, Woodhead Publishing, 2018: 59-127
    [18] Seifi M. Simulation and modeling of underground coal gasification using porous medium approach. [PhD Thesis]. University of Calgary, 2014
    [19] Khan MM, Mmbaga JP, Shirazi AS, et al. Modelling underground coal gasification: a review. Energies, 2015, 8(11): 12603-12668
    [20] Perkins G. Mathematical modelling of in situ combustion and gasification. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2018, 232(1): 56-73 doi: 10.1177/0957650917721595
    [21] Najafi M, Jalali SME, Khalokakaie R, et al. Prediction of cavity growth rate during underground coal gasification using multiple regression analysis. International Journal of Coal Science & Technology, 2015, 2(4): 318-324
    [22] Dinsmoor B, Galland JM, Edgar TF. The modeling of cavity formation during underground coal gasification. Journal of Petroleum Technology, 1978, 30(5): 695-704 doi: 10.2118/6185-PA
    [23] van Batenburg D. Heat and mass transfer during underground coal gasification. [PhD Thesis]. Delft University of Technology, 1992
    [24] Coeme A, Pirard JP, Mostade M. Modeling of the chemical processes in a longwall face underground gasifier at great depth. Situ, 1993, 17(1): 83-104
    [25] Kreinin EV, Shifrin EI. Mathematical modeling of the gas generation process in a coal reaction chamber. Journal of Mining Science, 1995, 31(3): 230-236 doi: 10.1007/BF02047674
    [26] Perkins G, Sahajwalla V. Steady-state model for estimating gas production from underground coal gasification. Energy & Fuels, 2008, 22(6): 3902-3914
    [27] Perkins G, Saghafi A, Sahajwalla V. Numerical modeling of underground coal gasification and its application to Australian coal seam conditions//18th Annual International Pittsburgh Coal Conference, 2001
    [28] Perkins G. Coupling dominant surface submodels and complex physical process computational fluid dynamics. The Anziam Journal, 2004, 45(45): 817-830
    [29] Seifi M, Abedi J, Chen Z. The analytical modeling of underground coal gasification through the application of a channel method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2013, 35(18): 1717-1727 doi: 10.1080/15567036.2010.531501
    [30] Kuyper RA. Transport phenomena in underground coal gasification channels. [PhD Theses]. Delft University of Technology, 1994
    [31] Perkins G. Mathematical modelling of underground coal gasification. [PhD Theses]. The University of New South Wales, 2005
    [32] Perkins G, Sahajwalla V. Modelling of heat and mass transport phenomena and chemical reaction in underground coal gasification. Chemical Engineering Research and Design, 2007, 85(3): 329-343 doi: 10.1205/cherd06022
    [33] Luo Y, Coertzen M, Dumble S. Comparison of UCG cavity growth with CFD model predictions//Seventh International Conference on CFD in the Minerals and Process Industries. Melbourne, Australia: CSIRO; 2009: 1-5
    [34] Luo Y. Computational fluid dynamics modelling of fluid flow and heat transfer for underground coal gasification//Hilton Adelaide, South Australia, Australia. “Chemeca 2010: Engineering at the Edge”, 26-29 September 2010: 675-687
    [35] Daggupati S, Mandapati RN, Mahajani SM, et al. Compartment modeling for flow characterization of underground coal gasification cavity. Industrial & Engineering Chemistry Research, 2011, 50(1): 277-290
    [36] Daggupati S, Mandapati RN, Mahajani SM, et al. Compartment modeling and flow characterization in nonisothermal underground coal gasification cavities. Industrial & Engineering Chemistry Research, 2012, 51(12): 4493-4508
    [37] Shirazi AS. CFD simulation of underground coal gasification. [PhD Thesis]. University of Alberta, 2012
    [38] Żogała A, Janoszek T. CFD simulations of influence of steam in gasification agent on parameters of UCG process. Journal of Sustainable Mining, 2015, 14(1): 2-11 doi: 10.1016/j.jsm.2015.08.002
    [39] Genuchten MT, Alves WJ. Analytical solutions of the one-dimensional convective-dispersive solute transport equation. US Department of Agriculture, 1982
    [40] Perkins G. Underground coal gasification–Part II: Fundamental phenomena and modeling. Progress in Energy and Combustion Science, 2018, 67: 234-274 doi: 10.1016/j.pecs.2018.03.002
    [41] Itasca. User's Manual, FLAC 7.0. Itasca Consulting Group Inc, Minneapolis, Minnesota (USA), 2014
    [42] Ekneligoda TC, Marshall AM. A coupled thermal-mechanical numerical model of underground coal gasification (UCG) including spontaneous coal combustion and its effects. International Journal of Coal Geology, 2018, 199: 31-38 doi: 10.1016/j.coal.2018.09.015
    [43] Advani SH, Lin YT, Shuck LZ. Thermal and structural response evaluation for underground coal gasification. Society of Petroleum Engineers Journal, 1977, 17(6): 413-422 doi: 10.2118/6152-PA
    [44] Yang L. Theoretical analysis of the coupling effect for the seepage field, stress field, and temperature field in underground coal gasification. Numerical Heat Transfer, Part A:Applications, 2005, 48(6): 585-606 doi: 10.1080/10407780490508115
    [45] Yang D, Sarhosis V, Sheng Y. Thermal–mechanical modelling around the cavities of underground coal gasification. Journal of the Energy Institute, 2014, 87(4): 321-329 doi: 10.1016/j.joei.2014.03.029
    [46] Akbarzadeh H, Chalaturnyk RJ. Sequentially coupled flow-geomechanical modeling of underground coal gasification for a three-dimensional problem. Mitigation and Adaptation Strategies for Global Change, 2016, 21(4): 577-594 doi: 10.1007/s11027-014-9583-2
    [47] Li H, Guo G, Zha J, et al. Research on the surface movement rules and prediction method of underground coal gasification. Bulletin of Engineering Geology and the Environment, 2016, 75(3): 1133-1142 doi: 10.1007/s10064-015-0809-7
    [48] 邹才能, 陈艳鹏, 孔令峰等. 煤炭地下气化及对中国天然气发展的战略意义. 石油勘探与开发, 2019, 46(2): 5-14 (Zou Caineng, Chen Yanpeng, Kong Lingfeng, et al. Underground coal gasification and its strategic significance to the development of natural gas industry in China. Petroleum Exploration and Development, 2019, 46(2): 5-14 (in Chinese)
    [49] Bhutto AW, Bazmi AA, Zahedi G. Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 2013, 39(1): 189-214 doi: 10.1016/j.pecs.2012.09.004
    [50] Samdani G, Aghalayam P, Ganesh A. A process model for underground coal gasification – Part-I: Cavity growth. Fuel, 2016, 181: 690-703 doi: 10.1016/j.fuel.2016.05.020
    [51] Roberts DG, Harris DJ. A kinetic analysis of coal char gasification reactions at high pressures. Energy & Fuels, 2006, 20(6): 2314-2320
    [52] Wu G, Zagorak R, Thomas HR. Insights into solid-gas conversion and cavity growth during Underground Coal Gasification (UCG) through Thermo-Hydraulic-Chemical (THC) modelling. International Journal of Coal Geology, 2021, 237: 103711 doi: 10.1016/j.coal.2021.103711
    [53] Jowkar A, Sereshki F, Najafi M. Numerical simulation of UCG process with the aim of increasing calorific value of syngas. International Journal of Coal Science & Technology, 2020, 7(1): 196-207
    [54] Jowkar A, Sereshki F, Najafi M. A new model for evaluation of cavity shape and volume during Underground Coal Gasification process. Energy, 2018, 148: 756-765 doi: 10.1016/j.energy.2018.01.188
    [55] Seifi M, Chen Z, Abedi J. Reaction rate constants in simulation of underground coal gasification using porous medium approach. Mitigation & Adaptation Strategies for Global Change, 2016, 21(4): 645-662
    [56] Perkins G, Sahajwalla V. A mathematical model for the chemical reaction of a semi-infinite block of coal in underground coal gasification. Energy & Fuels, 2005, 19(4): 1679-1692
    [57] Sarraf Shirazi A, Karimipour S, Gupta R. Numerical simulation and evaluation of cavity growth in in situ coal gasification. Industrial & Engineering Chemistry Research, 2013, 52(33): 11712-11722
    [58] Park KY, Edgar TF. Modeling of early cavity growth for underground coal gasification. Industrial & Engineering Chemistry Research, 1987, 26(2): 237-246
    [59] Sawyer WK, Shuck LZ. Numerical simulation of mass and energy transfer in the longwall process of underground gasification of coal//SPE Symposium on Numerical Simulation of Reservoir Performance, Los Angeles, California, 1976
    [60] Britten JA, Thorsness CB. The rocky mountain 1 CRIP experiment: comparison of model predictions with field data. Llnl-Ucrl-98642, or//Proc. 14th An. UCG Symp. , 1988: 138-145
    [61] Britten JA, Thorsness CB. A model for cavity growth and resource recovery during underground coal gasification. Situ, 1989, 13: 1-53
    [62] Nitao JJ, Camp DW, Buscheck TA, et al. Progress on a new integrated 3-D UCG simulator and its initial application. Llnl-Conf-50055//Proc. Int. Pittsburgh Coal Conf, Pittsburgh, September 2011
    [63] Camp DW, Krantz WB, Gunn RD. A water influx model for UCG with spalling- enhanced drying//Proc. 15th Intersociety Energy Conversion Engr. Conf. Seattle, August 1980, Amer. Inst. Aero. & Astronautics, paper 809256: 1304-1310
    [64] Camp DW, Nitao JJ, White JA, et al. A 3-D integrated multi-physics UCG simulator applied to UCG field tests. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2017
    [65] Ye D, Liu G, Gao F, et al. A multi-field coupling model of gas flow in fractured coal seam. Advances in Geo-Energy Research, 2021, 5(1): 104-118 doi: 10.46690/ager.2021.01.10
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  68
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 录用日期:  2022-10-21
  • 网络出版日期:  2022-10-22

目录

    /

    返回文章
    返回