A TRUE TRIAXIAL CREEP CONSTITUTIVE MODEL FOR ROCK CONSIDERING HYDROCHEMICAL DAMAGE
-
摘要: 为了准确描述岩石在酸性环境下真三轴蠕变行为的各阶段特征, 基于水岩作用的化学动力学理论, 定义了考虑PH值与时间的化学损伤因子, 将弹性体, 非线性Kelvin体, 线性Kelvin体和黏弹塑性体进行串联, 并考虑岩石在真三轴应力作用下的实际情况, 建立岩石酸腐与真三轴应力耦合作用下的损伤蠕变本构模型, 通过已有的蠕变试验数据对该模型进行参数辨识与验证, 并通过数据拟合得到岩石在真三轴应力下的屈服面方程, 探讨中间主应力对蠕变模型的影响. 结果表明, 推导的本构模型能很好地描述岩石在酸腐作用下真三轴蠕变行为的各阶段特性, 验证了其合理性与准确性.Abstract: In order to accurately describe the characteristics of each stage of rock creep behavior under the combined action of acid environment and true triaxial stress, based on the chemical kinetic theory of water-rock interaction, a chemical damage factor considering pH and time is defined. The elastic body, nonlinear Kelvin body, linear Kelvin body, and visco-elastic-plastic body are connected in series, and the actual situation under the action of true triaxial stress is considered at the same time, a damage-creep constitutive model considering the coupling of rock acid corrosion and true triaxial stress is established. The parameters of the deduced model are identified and verified with the existing experimental research results. The yield surface equation of rock under true triaxial stress is obtained by data fitting, and the influence of intermediate principal stress on the creep model is discussed. The results show that the derived constitutive model can well reflect creep properties of the rock under acid corrosion The true triaxial creep characteristics under the action have certain rationality and practicability.
-
表 1 考虑化学损伤的砂岩三轴蠕变模型参数(初始pH = 3)
Table 1. Sandstone triaxial creep model parameters considering chemical damage (initial pH = 3)
$ {\sigma _1} - {\sigma _3} $ K1/
GPaG1/
GPaG2/
GPaη2/
(GPa·h)$ \lambda $ G3/
GPaη3/
(GPa·h)η4/
(GPa·h)tF/h N 11.5 3.21 2.02 5.37 3.37 0.307 17.2 3.21 2.02 2.01 0.14 0.026 22.8 3.21 2.02 2.83 0.17 0.028 17.68 0.326 26.6 3.21 2.02 2.20 0.31 0.01 28.435 0.365 30.4 3.21 2.02 0.042 29.06 0.047 34.654 1.66 23.2 18.4 0.8 表 2 真三轴应力下的岩石损伤应力
Table 2. Rock peak stress under true triaxial stress
$ {\sigma _3} $/MPa $ {\sigma _2} $/MPa $ {\sigma _{\text{p}}} $/MPa 0 0 49 0 60 87 5 5 156 5 30 199 5 50 233 5 100 243 10 50 263 15 15 218 15 30 203 20 50 297 30 30 270 30 40 268 30 50 273 30 80 313 30 105 318 30 120 334 30 150 384 40 50 308 40 100 367 40 200 410 表 3 真三轴应力作用下的大理岩蠕变模型参数
Table 3. Parameters of the marble creep model under true triaxial stress
$ {\sigma _1} $/MPa $ {\sigma _2} $/MPa $ {\sigma _3} $/MPa $ {K_1} $/GPa $ {G_1} $/GPa $ {G_2} $/GPa $ {\eta _2} $/(GPa·h) $ \lambda $ $ {G_3} $/GPa $ {\eta _3} $/(GPa·h) $ {\eta _4} $/(GPa·h) ${t_{\text{F} } }/{\rm{h} }$ $ N $ 225 5 5 132 26 23 0.46 0.02 123 5.01 21 79.4 0.34 225 30 5 132 26 85 0.41 0.28 245 30 5 132 23 86 0.35 0.49 126 4069 265 30 5 132 18 106 3.54 1.41 24 85 35 1.93 0.7 225 50 5 132 25 123 0.31 0.74 245 50 5 138 25 115 0.25 0.12 265 50 5 136 24 108 0.29 0.088 285 50 5 134 24 81 0.25 0.18 306 13542 305 50 5 132 20 24 23 1.01 329 207 42 2.1 2.2 225 80 5 138 28 204 0.35 0.22 245 80 5 143 31 251 0.22 0.05 265 80 5 143 26 446 0.53 0.08 285 80 5 143 31 117 0.17 0.28 647 11954 305 80 5 143 31 129 0.20 0.23 524 13972 325 80 5 143 32 144 0.41 0.36 114 36 23 2.05 3.2 -
[1] Wang W, Li LQ, Xu WY, et al. Creep failure mode and criterion of Xiangjiaba sandstone. Journal of Central South University, 2012, 12(19): 3572-3581 [2] Wang RB, Xu WY, Zhang JC, et al. Study on accelerated creep properties and creep damage constitutive relation for volcanic breccias//Constitutive Modeling of Geomaterials. Springer, 2013: 633-639 [3] 刘新喜, 李盛南, 周炎明等. 高应力泥质粉砂岩蠕变特性及长期强度研究. 岩石力学与工程学报, 2020, 39(1): 9 (Liu Xinxi, Li Shengnan, Zhou Yanming, et al. Creep characteristics and long-term strength of high stress argillaceous siltstone. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 9 (in Chinese) [4] 刘东燕, 谢林杰, 庹晓峰等. 不同围压作用下砂岩蠕变特性及非线性黏弹塑性模型研究. 岩石力学与工程学报, 2017, 36(S2): 3705-3712 (Liu Dongyan, Xie Linjie, Tuo Xiaofeng, et al. Study on sandstone creep characteristics and nonlinear viscoelastic plastic model under different confining pressures. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3705-3712 (in Chinese) [5] 刘文博, 张树光, 陈雷等. 基于统计损伤原理的岩石加速蠕变模型研究. 岩土工程学报, 2020, 42(9): 1696-1704 (Liu Wenbo, Zhang Shuguang, Chen Lei, et al. Research on rock accelerated creep model based on statistical damage principle. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704 (in Chinese) [6] 张向东, 王睿, 张印等. 砂岩蠕变损伤模型特性. 辽宁工程技术大学学报(自然科学版), 2019, 38(1): 39-43 (Zhang Xiangdong, Wang Rui, Zhang Yin, et al. Characteristics of sandstone creep damage model. Journal of Liaoning Engineering University (Natural Science Edition) , 2019, 38(1): 39-43 (in Chinese) doi: 10.11956/j.issn.1008-0562.2019.01.007 [7] 刘文博, 张树光. 基于应力和时间双重影响下岩石蠕变模型研究. 中南大学学报(自然科学版), 2020, 51(8): 2256-2265 (Liu Wenbo, Zhang Shuguang. Research on rock creep model based on dual effects of stress and time. Journal of Central South University (Natural Science Edition) , 2020, 51(8): 2256-2265 (in Chinese) [8] 韩阳, 谭跃虎, 李二兵等. 岩石非定常Burgers蠕变模型及其参数识别. 工程力学, 2018, 35(3): 210-217 (Han Yang, Tan Yuehu, Li Erbing, et al. Unsteady Burgers creep model for rock and its parameter identification. Engineering Mechanics, 2018, 35(3): 210-217 (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0025 [9] 张亮亮, 王晓健. 岩石黏弹塑性损伤蠕变模型研究. 岩土工程学报, 2020, 42(6): 1085-1092 (Zhang Liangliang, Wang Xiaojian. Research on viscoelastic-plastic damage creep model of rock. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092 (in Chinese) [10] 丁梧秀, 冯夏庭. 化学腐蚀下灰岩力学效应的试验研究. 岩石力学与工程学报, 2004, 21(23): 3571-3576 (Ding Wuxiu, Feng Xiating. Experimental study on mechanical effect of limestone under chemical corrosion. Chinese Journal of Rock Mechanics and Engineering, 2004, 21(23): 3571-3576 (in Chinese) [11] 刘志航, 王伟, 李雪浩等. 考虑化学腐蚀作用的砂板岩损伤本构模, 安徽工业大学学报(自然科学版), 2020, 37(4): 391-395Liu Zhihang, Wang Wei, Li Xuehao, Damage constitutive model of slate considering chemical corrosion. Journal of Anhui Unive-rsity of Technology. 2020, 37(4): 391-395 (in Chinese) [12] 邓华锋, 胡安龙, 李建林等. 水岩作用下砂岩劣化损伤统计本构模型. 岩土力学, 2017, 38(3): 631-639Deng Huafeng, Hu Anglong, Li Jianlin. Statistical constitutive model of sandstone deterioration damage under water rock interaction. Rock and Soil Mechanics, 2017, 38(3): 631-639 (in Chinese) [13] 陈四利, 冯夏庭, 李邵军. 岩石单轴抗压强度与破裂特征的化学腐蚀效应, 岩石力学与工程学报, 2003, 4(22): 547-551Chen Sili, Feng Xiating, Li Shaojun. Peak value of stress-strain test curve and theoretical cur-ve of limestone. Chinese Journal of Rock Mechanics and Engineering. 2003, 4(22): 547-551 (in Chinese) [14] Hu DW, Zhou H, Hu QZ, et al. A hydro-mechanical- chemical coupling model for geomaterial with both mechanical and chemical damages considered. Acta Mechanica Solida Sinica, 2012, 25(4): 361-376 doi: 10.1016/S0894-9166(12)60033-0 [15] 王伟, 刘桃根, 李雪浩等. 化学腐蚀下花岗岩三轴压缩力学特性试验. 中南大学学报(自然科学版), 2015, 46(10): 3801-3807 (Wang Wei, Liu Taogen, Li Xuehao, et al. Mechanical behaviour of granite in triaxial compression under chemical corrosion. Journal of Central South University (Science and Technology) , 2015, 46(10): 3801-3807 (in Chinese) [16] 姜立春, 温勇. AMD 蚀化下砂岩的损伤本构模型. 中南大学学报(自然科学版), 2011, 42(11): 3502-3506 (Wen Yong. Damage constitutive model of sandstone during corrosion by AMD. Journal of Central South University (Science and Technology) , 2011, 42(11): 3502-3506 (in Chinese) [17] Li N, Zhu Y, Su B, et al. A chemical damage model of sandstone in acid solution. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(2): 243-249 [18] 冯晓伟, 王伟, 王如宾等. 考虑水化学损伤的砂岩流变损伤本构模型. 岩土力学, 2018, 39(9): 8 (Feng Xiaowei, Wang Wei, Wang Rubin, et al. Rheological damage constitutive model of sandstone considering hydrochemical damage. Rock and Soil Mechanics, 2018, 39(9): 8 (in Chinese) [19] Kachanov LM. The Theory of Creep. National Lending Library for Science and Technology. England: Boston SPA, 1967 [20] Perzyna P. Fundamental problems in viscoplasticity. Adv. Appl. Mech., 1966, 9(2): 244-368 [21] Aydan Ö, Nawrocki P. Rate-dependent deformability and strength characteristics of rocks//International Symp. on the Geotechnics of Hard Soils-Soft Rocks, Napoli, 1998: 403-411 [22] Aydan Ö. Time Dependency in Rock Mechanics and Rock Engineering. CRC Press, Taylor and Francis Group, 2016: 241 [23] Zhao Y, Wang Y, Wang W, et al. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int. J. Rock Mech. Min. Sci., 2017, 93: 66-75 [24] 焦丹. 软黏土电渗固结试验研究. [博士论文]. 杭州: 浙江大学, 2010Jiao Dan. Experimental study on electroosmotic consolidation of soft clay. [PhD Thesis]. Hangzhou: Zhejiang University, 2010 (in Chinese) [25] Mogi K. Effect of the triaxial stress system on fracture and flow of rocks. Phys. Earth Planet Inter., 1972, 5: 318-324 [26] Al-Ajmi AM, Zimmerman RW. Relation between the Mogi and the Coulomb failure criteria. Int. J. Rock Mech. Min. Sci., 2005, 42(3): 431-439 [27] Wang W, Liu TG, Shao JF. Effects of acid solution on the mechanical behavior of sandstone. Journal of Materials in Civil Engineering, 2016, 28(1): 1-6 [28] 李青麒. 软岩蠕变参数的曲线拟合计算方法. 岩石力学与工程学报, 1998, 17(5): 559-564 (Li Qingqi. Curve fitting calculation method for creep parameters of soft rock. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 559-564 (in Chinese) doi: 10.3321/j.issn:1000-6915.1998.05.012 [29] Zhao J, Feng XT, Zhang X, et al. Time-dependent behaviour and modeling of Jinping marble under true triaxial compression. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 218-230 doi: 10.1016/j.ijrmms.2018.08.009 [30] Zhao J, Feng XT, Zhang XW, et al. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression. Eng. Geol., 2018, 232: 160-170 -