EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑应变率效应的混凝土随机损伤本构模型研究

虢成功 李杰

虢成功, 李杰. 考虑应变率效应的混凝土随机损伤本构模型研究. 力学学报, 2022, 54(12): 3456-3467 doi: 10.6052/0459-1879-22-306
引用本文: 虢成功, 李杰. 考虑应变率效应的混凝土随机损伤本构模型研究. 力学学报, 2022, 54(12): 3456-3467 doi: 10.6052/0459-1879-22-306
Guo Chenggong, Li Jie. A new stochastic damage constitutive model of concrete considering strain rate effect. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3456-3467 doi: 10.6052/0459-1879-22-306
Citation: Guo Chenggong, Li Jie. A new stochastic damage constitutive model of concrete considering strain rate effect. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3456-3467 doi: 10.6052/0459-1879-22-306

考虑应变率效应的混凝土随机损伤本构模型研究

doi: 10.6052/0459-1879-22-306
基金项目: 国家自然科学基金资助项目(51538010)
详细信息
    作者简介:

    李杰, 教授, 主要研究方向: 随机力学、工程可靠性理论. E-mail: lijie@tongji.edu.cn

  • 中图分类号: TU528

A NEW STOCHASTIC DAMAGE CONSTITUTIVE MODEL OF CONCRETE CONSIDERING STRAIN RATE EFFECT

  • 摘要: 混凝土材料组分复杂且具有随机分布的特点, 其受力力学行为不可避免地存在非线性和随机性. 同时, 在动力荷载作用下, 混凝土材料具有不可忽视的率敏感性. 为了综合反映混凝土受力力学行为中的非线性、随机性与率敏感性, 本文从对材料的纳-微观裂纹扩展分析入手, 引入速率过程理论描述纳观裂纹的扩展速率, 并研究了对应的能量耗散过程. 在此基础上通过裂纹层级模型将纳观分析推演到微观尺度, 建立了微观能量耗散的基本表达式. 进而与微-细观随机断裂模型相结合, 形成了混凝土纳-微-细观随机损伤本构模型. 同时, 基于速率相关势垒的分析, 揭示了动力强度的提高源自加载速率和原子键断裂速率的竞争机制. 据此, 假定微裂纹间相互作用与应变率比值的相关关系以建立微弹簧能量耗散速率与应变率的联系, 实现了从静力本构模型向动力本构模型的扩展. 数值算例表明, 建议模型能够同时反映混凝土材料力学行为中的非线性、随机性和率敏感性. 最后通过与相关试验结果的对比, 验证了建议模型的正确性.

     

  • 图  1  受拉微-细观随机断裂模型

    Figure  1.  Tensile micro-meso stochastic fracture model

    图  2  理想圆盘状裂纹

    Figure  2.  Ideal planar crack

    图  3  能量势垒跨越过程

    Figure  3.  Energy barrier crossing process

    图  4  裂纹层级模型

    Figure  4.  Crack hierarchy model

    图  5  倒N型势垒

    Figure  5.  Inverse N potential

    图  6  不同加载速率下F$\delta /{\delta _c}$的变化曲线

    Figure  6.  Evolution of F with $\delta /{\delta _c} $ under different loading rates

    图  7  不同应变率下单轴受拉应力应变曲线均值和标准差对比

    Figure  7.  Comparison of mean and standard deviation of uniaxial tension stress-strain curves under different strain rates

    图  8  不同应变率下一典型样本${E_f} $随应变的演化

    Figure  8.  Evolution of ${E_f}$ with strain of a tipical sample under different loading rates

    图  9  隐式求解与显式求解对比

    Figure  9.  Comparison between implicit solution and explicit solution

    图  10  不同应变率下单轴受压应力应变曲线均值和标准差对比

    Figure  10.  Comparison of mean and standard deviation of uniaxial compression stress-strain curves under different strain rates

    图  11  DIF对比

    Figure  11.  Comparison of the DIF

  • [1] 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学. 北京: 科学出版社, 2014

    Li Jie, Wu Jianying, Chen Jianbing. Stochastic Damage Mechanics of Concrete Structures. Beijing: Science Press, 2014 (in Chinese)
    [2] Zhou X, Lu D, Du X, et al. A 3D non-orthogonal plastic damage model for concrete. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112716 doi: 10.1016/j.cma.2019.112716
    [3] Madkour H. Thermodynamic modeling of the elastoplastic-damage model for concrete. Journal of Engineering Mechanics, 2021, 147(4): 04021011 doi: 10.1061/(ASCE)EM.1943-7889.0001900
    [4] Zeng MH, Wu ZM, Wang YJ. A stochastic model considering heterogeneity and crack propagation in concrete. Construction and Building Materials, 2020, 254: 119289 doi: 10.1016/j.conbuildmat.2020.119289
    [5] He J, Gao R, Tang Z. A data-driven multi-scale constitutive model of concrete material based on polynomial chaos expansion and stochastic damage model. Construction and Building Materials, 2022, 334: 127441 doi: 10.1016/j.conbuildmat.2022.127441
    [6] Chen X, Shi C, Zhang YL, et al. Numerical and experimental study on strain rate effect of ordinary concrete under low strain rate. KSCE Journal of Civil Engineering, 2021, 25(5): 1790-1805 doi: 10.1007/s12205-021-0969-x
    [7] Zhang J, Zhang G, Sun X, et al. Analysis of compressive dynamic behaviors of plain concrete and lightweight aggregate concrete. Case Studies in Construction Materials, 2021, 15: e00557 doi: 10.1016/j.cscm.2021.e00557
    [8] Ayhan B, Lale E. Modeling strain rate effect on tensile strength of concrete using damage plasticity model. International Journal of Impact Engineering, 2022, 162: 104132 doi: 10.1016/j.ijimpeng.2021.104132
    [9] Kachanov LM. On the rupture time under the condition of creep. Izv. Akad. Nauk, Otd. Tekh. Nauk, 1958, 8: 26-31
    [10] Mazars J. A description of micro-and macroscale damage of concrete structures. Engineering Fracture Mechanics, 1986, 25(5-6): 729-737 doi: 10.1016/0013-7944(86)90036-6
    [11] Simo JC, Ju JW. Strain-and stress-based continuum damage models—I. Formulation. International Journal of Solids and Structures, 1987, 23(7): 821-840 doi: 10.1016/0020-7683(87)90083-7
    [12] Ju JW. On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. International Journal of Solids and Structures, 1989, 25(7): 803-833 doi: 10.1016/0020-7683(89)90015-2
    [13] Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures. International Journal of Solids and Structures, 1998, 35(14): 1533-1558 doi: 10.1016/S0020-7683(97)00119-4
    [14] Wu JY, Li J, Faria R. An energy release rate-based plastic-damage model for concrete. International Journal of Solids and Structures, 2006, 43(3-4): 583-612
    [15] 李杰, 任晓丹. 混凝土静力与动力损伤本构模型研究进展述评. 力学进展, 2010, 40(3): 284-297 (Li Jie, Ren Xiaodan. A review on the constitutive model for static and dynamic damage of concrete. Advances in Mechanics, 2010, 40(3): 284-297 (in Chinese)
    [16] Park T, Ahmed B, Voyiadjis GZ. A review of continuum damage and plasticity in concrete: Part I–Theoretical framework. International Journal of Damage Mechanics, 2022, 31(6): 901-954
    [17] Voyiadjis G Z, Ahmed B, Park T. A review of continuum damage and plasticity in concrete: Part II−Numerical framework. International Journal of Damage Mechanics, 2022, 31(5): 762-794 doi: 10.1177/10567895211063227
    [18] Wu Z, Zhang J, Fang Q, et al. Mesoscopic modelling of concrete material under static and dynamic loadings: A review. Construction and Building Materials, 2021, 278: 122419 doi: 10.1016/j.conbuildmat.2021.122419
    [19] 李杰, 张其云. 混凝土随机损伤本构关系. 同济大学学报(自然科学版), 2001, 29(10): 1135-1141 (Li Jie, Zhang Qiyun. Study of stochastic damage constitutive relationship for concrete material. Journal of Tongji University (Natural Science Edition), 2001, 29(10): 1135-1141 (in Chinese)
    [20] 李杰. 混凝土随机损伤力学的初步研究. 同济大学学报(自然科学版), 2004, 32(10): 1270-1277 (Li Jie. Research on the stochastic damage mechanics for concrete materials and structures. Journal of Tongji University (Natural Science Edition), 2004, 32(10): 1270-1277 (in Chinese)
    [21] 李杰, 杨卫忠. 混凝土弹塑性随机损伤本构关系研究. 土木工程学报, 2009, 42(2): 31-38 (Li Jie, Yang Weizhong. Elastoplastic stochastic damage constitutive law for concrete. China Civil Engineering Journal, 2009, 42(2): 31-38 (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.02.005
    [22] Li J, Ren X. Stochastic damage model for concrete based on energy equivalent strain. International Journal of Solids and Structures, 2009, 46(11-12): 2407-2419 doi: 10.1016/j.ijsolstr.2009.01.024
    [23] Liang SX, Ren XD, Li J. A random medium model for simulation of concrete failure. Science China Technological Sciences, 2013, 56(5): 1273-1281 doi: 10.1007/s11431-013-5200-y
    [24] Liu H, Ren X, Li J. Indentation tests based multi-scale random media modeling of concrete. Construction and Building Materials, 2018, 168: 209-220 doi: 10.1016/j.conbuildmat.2018.02.050
    [25] 李忠献, 刘泽锋. 混凝土动态本构模型综述. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 853-863 (Li Zhongxian, Liu Zefeng. Review of concrete dynamic constitutive model. Journal of Tianjin University (Science and Technology), 2015, 48(10): 853-863 (in Chinese)
    [26] Lu D, Zhou X, Du X, et al. 3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition. Journal of Engineering Mechanics, 2020, 146(11): 04020124 doi: 10.1061/(ASCE)EM.1943-7889.0001854
    [27] Minh HL, Khatir S, Wahab MA, et al. A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads. Journal of Building Engineering, 2021, 44: 103239 doi: 10.1016/j.jobe.2021.103239
    [28] Li X, Chen Q, Chen JF, et al. Dynamic increase factor (DIF) for concrete in compression and tension in FE modelling with a local concrete model. International Journal of Impact Engineering, 2022, 163: 104079 doi: 10.1016/j.ijimpeng.2021.104079
    [29] Ren X, Zeng S, Li J. A rate-dependent stochastic damage–plasticity model for quasi-brittle materials. Computational Mechanics, 2015, 55(2): 267-285
    [30] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展. 工程力学, 2015, 55(2): 267-285 (Yu Zhiwu, Wu Lingyu, Shan Zhi. Models for deterministic and stochastic damage constitutions of concrete-a short review. Engineering Mechanics, 2015, 55(2): 267-285 (in Chinese) doi: 10.1007/s00466-014-1100-7
    [31] Lemaitre J. Evaluation of dissipation and damage in metals//Proc. ICM Kyoto. 1971: 1
    [32] 曾莎洁. 混凝土随机损伤本构模型与试验研究. [博士论文]. 上海: 同济大学, 2012

    Zeng Shajie. Dynamic experimental research and stochastic damage constitutive model for concrete. [PhD Thesis]. Shanghai: Tongji University, 2012 (in Chinese)
    [33] Li J, Chen J. Stochastic Dynamics of Structures. New York: John Wiley & Sons, 2009
    [34] 曾莎洁, 李杰. 混凝土单轴受压本构关系的概率密度描述. 同济大学学报(自然科学版), 2010, 38(6): 798-804 (Zeng Shajie, Li Jie. Analysis of constitutive law of plain concrete subjiected to uniaxial compressive stress based on generalized probability density evolution method. Journal of Tongji University (Natural Science Edition), 2010, 38(6): 798-804 (in Chinese)
    [35] Ding ZD, Li J. A physically motivated model for fatigue damage of concrete. International Journal of Damage Mechanics, 2018, 27(8): 1192-1212 doi: 10.1177/1056789517726359
    [36] Wang YP, Li J. A two-scale stochastic damage model for concrete under fatigue loading. International Journal of Fatigue, 2021, 153: 106508 doi: 10.1016/j.ijfatigue.2021.106508
    [37] Bažant ZP, Le JL, Bazant MZ. Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics. Proceedings of the National Academy of Sciences, 2009, 106(28): 11484-11489 doi: 10.1073/pnas.0904797106
    [38] Le JL, Bažant ZP, Bazant MZ. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids, 2011, 59(7): 1291-1321
    [39] Hänggi P, Talkner P, Borkovec M. Reaction-rate theory: fifty years after Kramers. Reviews of Modern Physics, 1990, 62(2): 251 doi: 10.1103/RevModPhys.62.251
    [40] 李杰, 冯德成, 任晓丹等. 混凝土随机损伤本构关系工程参数标定与应用. 同济大学学报(自然科学版), 2017(8): 1099-1107 (Li Jie, Feng Decheng, Ren Xiaodan, et al. Calibration and application of concrete stochastic damage model. Journal of Tongji University (Natural Science Edition), 2017(8): 1099-1107 (in Chinese)
    [41] Feng Y, Fan J, Tadmor EB. A rigorous universal model for the dynamic strength of materials across loading rates. Journal of the Mechanics and Physics of Solids, 2022, 159: 104715 doi: 10.1016/j.jmps.2021.104715
    [42] Cusatis G. Strain-rate effects on concrete behavior. International Journal of Impact Engineering, 2011, 38(4): 162-170 doi: 10.1016/j.ijimpeng.2010.10.030
    [43] Bažant ZP, Caner FC. Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy. Journal of the Mechanics and Physics of Solids, 2014, 64: 223-235
    [44] Risken H. The Fokker-Planck Equation. Berlin, Springer, 1996
    [45] Cao J, Chung DDL. Effect of strain rate on cement mortar under compression, studied by electrical resistivity measurement. Cement and Concrete Research, 2002, 32(5): 817-819 doi: 10.1016/S0008-8846(01)00753-0
    [46] Dilger WH, Koch R, Kowalczyk R. Ductility of plain and confined concrete under different strain rates. Journal Proceedings, 1984, 81(1): 73-81
    [47] Simo JC, Hughes TJR. Computational Inelasticity. Berlin: Springer Science & Business Media, 2006
    [48] Gao X, Zhou L, Ren X, et al. Rate effect on the stress–strain behavior of concrete under uniaxial tensile stress. Structural Concrete, 2021, 22: E815-E830
    [49] Schuler H, Mayrhofer C, Thoma K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. International Journal of Impact Engineering, 2006, 32(10): 1635-1650
    [50] Bischoff PH, Perry SH. Compressive behaviour of concrete at high strain rates. Materials and Structures, 1991, 24(6): 425-450 doi: 10.1007/BF02472016
  • 加载中
图(11)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  86
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 录用日期:  2022-10-26
  • 网络出版日期:  2022-10-27
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回